Skip to main content
Log in

Improved Electrical Properties of Low-Temperature Sintered Cu Doped Ba0.99Ca0.01Zr0.02Ti0.98O3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a series of Ba0.99Ca0.01Zr0.02Ti0.98O3-x mol.% Cu (BCZT-xCu) ceramics were fabricated with a conventional solid state reaction method. The effects of sintering temperature and doping level of Cu ions on the microstructure development and electrical properties were studied systematically. The optimal sintering temperature could be lowered by 200°C compared to pure BCZT ceramics, due to the addition of Cu. Optimized properties were obtained for BCZT-2.0 mol.% Cu ceramics sintered at 1250°C, showing improved ferroelectric properties with a high remnant polarization (P r = 8.25 μC/cm2) and a low coercive field (E c = 0.395 kV/mm). Of particular significance is that the dielectric properties were found to show high thermal stability. The dielectric constant \( \left( {\varepsilon_{r} } \right) \) is within the scope of 1900–2350, while the dielectric loss (tanδ) is in the range of 1.15–2.2% within a temperature range of 30–105°C. In general, the BCZT-2.0Cu ceramics mainly display the characteristic of normal ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cai, J.C. Gao, C.L. Fu, and L.W. Tang, J. Alloys Compd. 487, 668 (2009).

    Article  Google Scholar 

  2. Y. Zhang, H.J. Sun, and W. Chen, Ceram. Int. 41, 8520 (2015).

    Article  Google Scholar 

  3. B.W. Lee and S.B. Cho, J. Eur. Ceram. Soc. 25, 2009 (2005).

    Article  Google Scholar 

  4. M.L.V. Mahesh, V.V. Bhanu Prasad, and A.R. James, J. Alloys Compd. 611, 43 (2014).

  5. P. Parjansri, U. Intatha, and S. Eitssayeam, Mater. Res. Bull. 65, 61 (2015).

    Article  Google Scholar 

  6. T. Badapanda, S. Sarangi, B. Behera, P.K. Sahoo, S. Anwar, T.P. Sinha, G.E. Luz Jr, E. Longo, and L.S. Cavalcante, Curr. Appl. Phys. 14, 708 (2014).

    Article  Google Scholar 

  7. A. Outzourhit, M.A.EI Idrissi Raghni, M.L. Hafid, F. Bensamka, and A. Outzourhit, J. Alloys. Compd. 340, 214 (2002).

  8. B. Cui, P.F. Yu, J. Tian, and Z.G. Chang, Mater. Sci. Eng. B 133, 205 (2006).

    Article  Google Scholar 

  9. H.J. Sun, Y. Zhang, X.F. Liu, Y. Liu, and W. Chen, Ceram. Int. 41, 555 (2015).

    Article  Google Scholar 

  10. F.T. Du, P.F. Yu, B. Cui, H.O. Cheng, and Z.G. Chang, J. Alloys Compd. 478, 620 (2009).

    Article  Google Scholar 

  11. T. Badapanda, S. Sarangi, B. Behera, and S. Anwar, Curr. Appl. Phys. 14, 1192 (2014).

    Article  Google Scholar 

  12. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, and G.Z. Zang, J. Alloys Compd. 583, 305 (2014).

    Article  Google Scholar 

  13. W.F. Liu and X.B. Ren, Phys. Rev. Lett. 25, 257602 (2009).

    Article  Google Scholar 

  14. J.F. Ma, X.Y. Liu, and W.H. Li, J. Alloys Compd. 581, 642 (2013).

    Article  Google Scholar 

  15. D.Y. Liang, X.H. Zhu, J.L. Zhu, J.G. Zhu, and D.Q. Xiao, Ceram. Int. 40, 2585 (2014).

    Article  Google Scholar 

  16. C.-S. Chou, C.-L. Liu, C.-M. Hsiung, and R.-Y. Yang, Power Technol. 210, 212 (2011).

    Article  Google Scholar 

  17. H.-Y. Park, J.-Y. Choi, M.-K. Choi, K.-H. Cho, S. Nahm, H.-G. Lee, and H.-W. Kang, J. Am. Ceram. Soc. 91, 2374 (2008).

    Article  Google Scholar 

  18. F. Azough, M. Wegrzyn, R. Freer, S. Sharma, and D. Hall, J. Eur. Ceram. Soc. 31, 569 (2011).

    Article  Google Scholar 

  19. H.-Y. Park, C.-W. Ahn, K.-H. Cho, S. Nahm, H.-G. Lee, H.-W. Kang, D.-H. Kim, and K.-S. Park, J. Am. Ceram. Soc. 90, 4066 (2007).

    Google Scholar 

  20. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, and P. An, Ceram. Int. 38, 4353 (2012).

    Article  Google Scholar 

  21. W. Li, J.G. Hao, W.F. Bai, Z.J. Xu, R.Q. Chu, and J.W. Zhai, J. Alloys Compd. 531, 46 (2012).

    Article  Google Scholar 

  22. Y.R. Cui, X.Y. Liu, M.H. Jiang, X.Y. Zhao, X. Shan, W.H. Li, C.L. Yuan, and C.R. Zhou, Ceram. Int. 38, 4761 (2012).

    Article  Google Scholar 

  23. C. Han, J.G. Wu, C.H. Pu, S. Qiao, B. Wu, J.G. Zhu, and D.Q. Xiao, Ceram. Int. 38, 6359 (2012).

    Article  Google Scholar 

  24. H.J. Sun, Y. Zhang, X.F. Liu, Y. Liu, S.S. Guo, and W. Chen, J. Mater. Sci. 25, 3962 (2014).

    Google Scholar 

  25. M. Jiang, Q. Lin, D.M. Lin, Q.J. Zheng, X.M. Fan, X.C. Wu, H.L. Sun, Y. Wan, and L. Wu, J. Mater. Sci. 48, 1035 (2013).

    Article  Google Scholar 

  26. J.G. Hao, W.F. Bai, W. Li, and J.W. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012).

    Article  Google Scholar 

  27. Y.K. Yan, K.-H. Cho, and S. Priya, J. Am. Ceram. Soc. 94, 3953 (2011).

    Article  Google Scholar 

  28. L. Qiao and X.F. Bi, J. Eur. Ceram. Soc. 29, 1995 (2009).

    Article  Google Scholar 

  29. J.H. Gao, Q. Li, H.R. Liu, J. Shim, Q.F. Yan, Y.L. Zhang, and X.C. Chu, Ceram. Int. 41, 2497 (2015).

    Article  Google Scholar 

  30. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, and Z. Shen, J. Appl. Phys. 107, 014111 (2010).

    Article  Google Scholar 

  31. S. Chattopadhyay, P. Ayyub, V.R. Palkar, and M. Multani, Phys. Rev. B. 52, 13177 (1995).

    Article  Google Scholar 

  32. X.L. Chao, J.J. Wang, L.L. Wei, R.N. Guo, and Z.P. Yang, J. Mater. Sci. 26, 7311 (2015).

    Google Scholar 

  33. M. Nevriva, E. Pollert, L. Matejkova, and A. Triska, J. Cryst. Growth 91, 434 (1988).

    Article  Google Scholar 

  34. Q. Xu, M. Chen, W. Chen, H.X. Liu, B.H. Kim, and B.K. Ahn, Acta Mater. 56, 642 (2008).

    Article  Google Scholar 

  35. J. Li, X.J. Sun, X.S. Zhang, Q. Chen, Z.H. Peng, and P. Yu, Phys. Status Solidi A 210, 533 (2013).

    Article  Google Scholar 

  36. T. Chen, T. Zhang, G.C. Wang, J.F. Zhou, J.W. Zhang, and Y.H. Liu, J. Mater. Sci. 47, 4612 (2012).

    Article  Google Scholar 

  37. Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.P. Huang, and F. Zhang, Acta Mater. 61, 4481 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, H. & Chen, W. Improved Electrical Properties of Low-Temperature Sintered Cu Doped Ba0.99Ca0.01Zr0.02Ti0.98O3 Ceramics. J. Electron. Mater. 45, 5006–5016 (2016). https://doi.org/10.1007/s11664-016-4672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4672-5

Keywords

Navigation