Skip to main content
Log in

Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effect of CuO content on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCZT) ceramics was systematically studied. The addition of CuO effectively results in an increase of grain sizes in BCZT ceramics. BCZT ceramics endure a lattice distortion due to the Cu2+ part substitution for the Ti4+ site, and a low-sintering temperature of BCTZ ceramics is induced by the addition of CuO. With increasing CuO content, the dielectric constant and the dielectric loss of BCTZ ceramics decrease, together with the decrease of the remanent polarization and the coercive field. Effects of sintering temperature and dwell time on the microstructure and electrical properties of BCZT ceramics with x = 0.5 mol% CuO were also studied, and an optimum sintering condition helps to further improve its electrical properties. BCZT ceramics with x = 0.5 mol% CuO possess optimum electrical properties: d 33 ~ 403 pC/N and k p ~ 44.6% when sintered at a low temperature of 1400 °C for 6 h. As a result, BCZT ceramics with a sintering aid of CuO are a promising candidate for the transducer and transformer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cross LE (2004) Lead-free at last. Nature 432:24

    Article  CAS  Google Scholar 

  2. Zhang SJ, Xia R, Shrout TR (2007) J Electroceram 19:251

    Article  Google Scholar 

  3. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92:1153

    Article  Google Scholar 

  4. Xiao DQ, Wu JG, Wu L, Zhu JG, Yu P, Lin DM, Liao YW, Sun Y (2009) J Mater Sci 44:5408. doi:10.1007/s10853-009-3543-3

    Article  CAS  Google Scholar 

  5. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84

    Article  CAS  Google Scholar 

  6. Wu JG, Wang YY, Xiao DQ, Zhu JG (2007) Appl Phys Lett 91:132914

    Article  Google Scholar 

  7. Zuo RZ, Fang XS, Ye C (2007) Appl Phys Lett 90:092904

    Article  Google Scholar 

  8. Zhang SJ, Xia R, Shrout TR (2007) Appl Phys Lett 91:132913

    Article  Google Scholar 

  9. Herabut A, Safari A (1997) J Am Ceram Soc 80:2954

    Article  CAS  Google Scholar 

  10. Egerton L, Dillon DM (1959) J Am Ceram Soc 42:438

    Article  CAS  Google Scholar 

  11. Wu JG, Xiao DQ, Wang YY, Wu WJ, Zhang B, Li J, Zhu JG (2008) Scripta Mater 59:750

    Article  CAS  Google Scholar 

  12. Peng C, Li JF, Gong W (2005) Mater Lett 59:1576

    Article  CAS  Google Scholar 

  13. Ahn CW, Song HC, Nahm S, Priya S, Park SH, Uchino K, Lee HG, Lee HJ (2006) J Am Ceram Soc 89:921

    Article  CAS  Google Scholar 

  14. Bechmann R (1956) J Acoust Soc Am 28:347

    Article  Google Scholar 

  15. Liu WF, Ren XB (2009) Phys Rev Lett 103:257602

    Article  Google Scholar 

  16. Wu J, Xiao D, Wu W, Zhu J, Wang J (2011) J Alloys Compd 509:L359

    Article  CAS  Google Scholar 

  17. Zhang SW, Zhang HL, Zhang BP, Yang S (2010) J Alloy Compd 506:131

    Article  CAS  Google Scholar 

  18. Burn I (1981) US Patent 4283753 (1981)

  19. Yang CF, Wu L, Wu TS (1992) J Mat Sci 27:6573

    Article  CAS  Google Scholar 

  20. Zheng P, Zhang JL, Shao SF, Tan YQ, Wang CL (2009) Appl Phys Lett 94:032902

    Article  Google Scholar 

  21. Tsai CC, Chu SY, Lu CH (2009) IEEE Trans Ultrason Ferroelectr Freq Control 56:660

    Article  Google Scholar 

  22. Lee YC, Huang YL (2009) J Am Ceram Soc 92(11):2661

    Google Scholar 

  23. Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2011) Script Mater 65:771

    Article  CAS  Google Scholar 

  24. Derling S, Müller Th, Abicht H-P, Felgner K-H, Langhammer HT (2001) J Mater Sci 36:1425. doi:10.1023/A:1017532310071

    Article  CAS  Google Scholar 

  25. Ramesh Babu A, Prasadarao AV (1997) J Mater Sci Lett 16:313

    Article  Google Scholar 

  26. Wang XH, Lu WH, Liu J, Zhou YL, Zhou DX (2006) J Eur Ceram Soc 26:1981

    Article  Google Scholar 

  27. Jiang HT, Zhai JW, Chou XJ, Yao X (2009) Mater Res Bull 44:566

    Article  CAS  Google Scholar 

  28. Shannon RD, Prewitt CT (1969) Acta Cryst B 25:925

    Article  CAS  Google Scholar 

  29. Takao H, Saito Y, Aoki Y, Horibuchi K (2006) J Am Ceram Soc 89:1951

    Article  CAS  Google Scholar 

  30. Lin D, Kwok KW, Chan HLW (2007) Appl Phys Lett 90:232903

    Article  Google Scholar 

  31. Hou D, Zhu MK, Wang H, Wang B, Yan H, Tian CS (2004) Mater Sci Eng B 110:27

    Article  Google Scholar 

  32. Wu JG, Xiao DQ, Wu WJ, Chen Q, Zhu JG, Eu J (2012) Ceram Soc 32(4):891

    Article  CAS  Google Scholar 

  33. Wang P, Li Y, Li Y, Eu J (2011) Ceram Soc 31:2005

    Article  CAS  Google Scholar 

  34. Park HY, Seo IT, Choi MK, Nahm S, Lee HG, Kang HW, Choi BH (2008) J Appl Phys 104:034103

    Article  Google Scholar 

  35. Lee JH, Jang YI, Youn HJ, Jang JW, Kim BK (1999) J Mater Sci 34:625. doi:10.1023/A:1004523502454

    Article  CAS  Google Scholar 

  36. Cavalheiro AA, Bruno JC, Zaghete MA, Varela JA (2007) J Mater Sci 42:828. doi:10.1007/s10853-006-0080-1

    Article  CAS  Google Scholar 

  37. Hong R, Gao F, Liu J, Yao Y, Tian C (2008) J Mater Sci 43:6126. doi:10.1007/s10853-008-2937-y

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge the supports of the Chengdu Medical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Zhang, T., Wang, G. et al. Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J Mater Sci 47, 4612–4619 (2012). https://doi.org/10.1007/s10853-012-6326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6326-1

Keywords

Navigation