Skip to main content
Log in

Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ba0.85Ca0.15Ti0.90Zr0.10O3 + xmol% MnO2 lead-free ceramics have been prepared by a conventional sintering method and the effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics have been studied. The addition of 0.25 mol% MnO2 promotes grain growth, improves the ferroelectricity of the ceramics and strengthens ferroelectric tetragonal–ferroelectric orthorhombic phase transition near 40 °C. Because of the coexistence of tetragonal and orthorhombic phases and the combinatory effects of soft and hard doping of Mn ions, the ceramic with x = 0.25 exhibits the optimum piezoelectric properties (d 33 = 306 pC/N and k p = 42.2 %, respectively). Excess MnO2 inhibits the grain growth and degrades the ferroelectric and piezoelectric properties of the ceramics. Sintering temperature has an important influence on the microstructure, tetragonal–orthorhombic phase transition near 40 °C, ferroelectric and piezoelectric properties of the ceramics. The increase in sintering temperature leads to large grains and more noticeable tetragonal–orthorhombic phase transition near 40 °C, enhances ferroelectricity and thus improves effectively the piezoelectricity of the ceramics. The Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramic sintered at 1350 °C possesses the optimum piezoelectric constant d 33 value of 373 pC/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuang SJ, Tang XG, Li LY, Jiang YP, Liu QX (2009) Scr Mater 61:68

    Article  CAS  Google Scholar 

  2. Wei X, Wan X, Xi Y (2008) J Electroceram 21:226

    Article  CAS  Google Scholar 

  3. Haertiling GH (1999) J Am Ceram Soc 82:797

    Article  Google Scholar 

  4. Bechmann R (1956) J Acoust Soc Am 28:347

    Article  Google Scholar 

  5. Liu W, Ren X (2009) Phys Rev Lett 103:257602

    Article  Google Scholar 

  6. Li W, Xu Z, Chu R, Fu P, Zang G (2010) Mater Lett 64:2325

    Article  CAS  Google Scholar 

  7. Zhang SW, Zhang HL, Zhang BP, Yang S (2010) J. Alloys Compd 506:131

    Article  CAS  Google Scholar 

  8. Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2011) Scr Mater 65:771

    Article  CAS  Google Scholar 

  9. Li W, Xu Z, Chu R, Fu P, Zang G (2011) Mater Sci Eng, B 176:65

    Article  CAS  Google Scholar 

  10. Wang P, Li Y, Lu Y (2011) J Eur Ceram Soc 31:2005

    Article  CAS  Google Scholar 

  11. Wu J, Xiao D, Wu W, Zhu J, Wang J (2011) J Alloys Compd 509:L359

    Article  CAS  Google Scholar 

  12. Su S, R. Zuo Z, Lu SB, Xu ZK, Wang XH, Li LT (2011) Curr Appl Phys 11:120–121

    Article  Google Scholar 

  13. Li G, Zheng L, Yin Q (2005) J Appl Phys 98:064108

    Article  Google Scholar 

  14. Hou Y, Zhu M, Gao F, Wang H, Wang B, Yan H, Tian C (2004) J Am Ceram Soc 87:847

    Article  CAS  Google Scholar 

  15. Yu CS, Hsieh HL (2005) J Eur Ceram Soc 25:2425

    Article  CAS  Google Scholar 

  16. Li SM, Lee SH, Yoon CB, Kim HE, Lee KW (2007) J Electroceram 18:311

    Article  CAS  Google Scholar 

  17. Yan Y, Cho KH, Priya S (2011) J Am Ceram Soc 94:3953

    Article  CAS  Google Scholar 

  18. Mgbemere HE, Herber RP, Schneider GA (2009) J Eur Ceram Soc 29:1729

    Article  CAS  Google Scholar 

  19. Nagata H, Takenaka T (2001) J Eur Ceram Soc 21:1299

    Article  CAS  Google Scholar 

  20. Fan X, Wang Y, Jiang Y (2011) J Alloys Compd 509:6652

    Article  CAS  Google Scholar 

  21. Qiao L, Bi X (2009) J Eur Ceram Soc 29:1995

    Article  CAS  Google Scholar 

  22. Buixaderas E, Bovtun V, Kempa M, Savinov M, Nuzhnyy D, Kadlec F, Vaněk P, Petzelt J, Eriksson M, Shen Z (2010) J Appl Phys 107:014111

    Article  Google Scholar 

  23. Park Y, Lee WJ, Kim HG (1997) J Phys: Condens Matter 9:9445

    Article  CAS  Google Scholar 

  24. Chattopadhyay S, Ayyub P, Palkar VR, Multani M (1995) Phys Rev B 52:13177

    Article  CAS  Google Scholar 

  25. Damjanovic D, Demartin M (1997) J Phys: Condens Matter 9:4943

    Article  CAS  Google Scholar 

  26. Zhang L, Zhong WL, Wang CL, Zhang PL, Wang YG (1998) Phys Stat Sol (a) 168:543

    Article  CAS  Google Scholar 

  27. Martirenat HT, Burfoot JC (1974) J Phys C: Solid State Phys 7:1974

    Article  Google Scholar 

  28. Cao W, Randall CA (1996) J Phys Chem Solids 57:1505

    Article  Google Scholar 

  29. Randall CA, Kim N, Kucera JP, Cao W, Shrout TR (1998) J Am Ceram Soc 81:677

    Article  CAS  Google Scholar 

  30. Demartin M, Damjanovic D (1996) Appl Phys Lett 68:3046

    Article  CAS  Google Scholar 

  31. Damjanovic D (1998) Rep Prog Phys 61:1267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the projects of Education Department of Sichuan Province (11ZA104), Science and Technology Bureau of Sichuan Province (2010JQ0046) and the Open Projects of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of Southwest University of Science and Technology (10zxfk27) and State Key Laboratory of Electronic Thin Films and Integrated Devices of University of Electronic Science and Technology of China (KFJJ201108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dunmin Lin or Qiaoji Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Lin, Q., Lin, D. et al. Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J Mater Sci 48, 1035–1041 (2013). https://doi.org/10.1007/s10853-012-6835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6835-y

Keywords

Navigation