Skip to main content
Log in

Fabrication of Nd3+ and Mn2+ ions Co-doped Spinal Strontium Nanoferrites for High Frequency Device Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microemulsion method has been used for the synthesis of high resistive spinal nanoferrites with nominal composition Sr1−x Nd x Fe2−y Mn y O4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0) for high frequency device applications. It has been confirmed by x-ray diffraction (XRD) results that these ferrites have a cubic spinal structure with a mean crystallite size ranging from 34 mm to 47 nm. The co-substitution of Nd3+ and Mn2+ ions was performed, and its effect on electrical, dielectric and impedance properties was analyzed employing direct current (DC) resistivity measurements, dielectric measurements and electrochemical impedance spectroscopy (EIS). The DC resistivity (ρ) value was the highest for the composition Sr0.90Nd0.1FeMnO4, but for the same composition, dielectric parameters and alternating current (AC) conductivity showed their minimum values. In the lower frequency range, the magnitudes of dielectric parameters decrease with increasing frequency and show an almost independent frequency response at higher frequencies. Dielectric polarization has been employed to explain these results. It was inferred from the results of EIS that the conduction process in the studied ferrite materials is predominantly governed by grain boundary volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhao, Y. Cui, H. Yang, L. Yu, W. Jin, and S. Feng, Mater. Lett. 60, 104 (2006).

    Article  Google Scholar 

  2. M. Al-Haj, J. Magn. Magn. Mater. 299, 435 (2006).

    Article  Google Scholar 

  3. C.B. Kolekar, P.N. Kamble, S.G. Kulkarni, and A.S. Vaingankar, J. Mater. Sci. 30, 5784 (1995).

    Article  Google Scholar 

  4. A. Tawfik and O.M. Hemeda, Mater. Lett. 56, 665 (2002).

    Article  Google Scholar 

  5. J. Zhu and K. Tseng, IEEE Trans. Magn. 40, 3339 (2004).

    Article  Google Scholar 

  6. C.G. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

  7. A. Dias and R.L. Moreira, J. Mater. Res. 13, 2190 (1998).

    Article  Google Scholar 

  8. H.M. Zaki, Phys. B 363, 232 (2005).

    Article  Google Scholar 

  9. J.R. Macdonald, Impedance Spectroscopy (New York: Wiley, 1987).

    Google Scholar 

  10. S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Amsterdam, The Netherlands: Elsevier Publication, 2003).

    Google Scholar 

  11. R. Bouchet, P. Knauth, and J.M. Laugier, J. Electroceram. 16, 229 (2006).

    Article  Google Scholar 

  12. S.D. Chhaya, M.P. Pandya, M.C. Chhantbar, K.B. Modi, G.J. Baldha, and H.H. Joshi, J. Alloys Compd. 377, 155 (2004).

    Article  Google Scholar 

  13. M. Javed Iqbal and M. Rukh Siddiquah, J. Magn. Magn. Mater. 320, 845 (2008).

    Article  Google Scholar 

  14. P.K. Roy and J. Bera, J. Mater. Process. Technol. 197, 279 (2008).

    Article  Google Scholar 

  15. W. Zhang, X. Qiao, and J. Chen, Chem. Phys. 330, 495 (2006).

    Article  Google Scholar 

  16. A. Hashhash and M. Kaiser, J. Electron. Mater. 45, 462 (2015).

    Article  Google Scholar 

  17. A.M. Abdeen, O.M. Hemeda, E.E. Assem, and M.M. El-Sehly, J. Magn. Magn. Mater. 238, 75 (2002).

    Article  Google Scholar 

  18. C. Venkataraju, G. Sathishkumar, and K. Sivakumar, J. Magn. Magn. Mater. 323, 1817 (2011).

    Article  Google Scholar 

  19. N. Hayashi, H. Ikuta, and M. Wakihara, J. Electrochem. Soc. 146, 1351 (1999).

    Article  Google Scholar 

  20. M.J. Iqbal and Z. Ahmad, J. Power Sources 179, 763 (2008).

    Article  Google Scholar 

  21. K. Venkateswarlu, A. Chandra Bose, and N. Rameshbabu, Phys. B 405, 4256 (2010).

    Article  Google Scholar 

  22. M. Irfan, N.A. Niaz, I. Ali, S. Nasir, A. Shakoor, A. Aziz, N. Karamat, and N.R. Khalid, J. Electron. Mater. 44, 2369 (2015).

    Article  Google Scholar 

  23. M. Ahmad, I. Ali, F. Aen, M.U. Islam, M.N. Ashiq, S. Atiq, W. Ahmad, and M.U. Rana, Ceram. Int. 38, 1267 (2012).

    Article  Google Scholar 

  24. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, and Alimuddin, Alloys Compd. 464, 361 (2008).

    Article  Google Scholar 

  25. M.N. Ashiq, S. Saleem, M.A. Malana, and R. Anis Ur, J. Alloys Compd. 486, 640 (2009).

    Article  Google Scholar 

  26. I.H. Gul, F. Amin, A.Z. Abbasi, M. Anis-ur-Rehman, and A. Maqsood, Scripta Mater. 56, 497 (2007).

    Article  Google Scholar 

  27. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 56, 59 (1921).

    Article  Google Scholar 

  28. M.S. Rashid and F.X. Kayser, J. Less-Common Met. 25, 107 (1971).

    Article  Google Scholar 

  29. S. Hussain and A. Maqsood, J. Alloys Compd. 466, 293 (2008).

    Article  Google Scholar 

  30. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, and A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007).

    Article  Google Scholar 

  31. E.J. Verwey, P.W. Haayman, and F.C. Romeijn, J. Chem. Phys. 15, 181 (1947).

    Article  Google Scholar 

  32. G. Asghar and M. Anis-ur-Rehman, J. Alloys Compd. 526, 85 (2012).

    Article  Google Scholar 

  33. S. Hussain, M. Anis-ur-Rehman, A. Maqsood, and M.S. Awan, J. Cryst. Growth 297, 403 (2006).

    Article  Google Scholar 

  34. M.R. Eraky, J. Magn. Magn. Mater. 324, 1034 (2012).

    Article  Google Scholar 

  35. A.M. Abo El Ata, F.M. Reicha, and M.M. Ali, J. Magn. Magn. Mater. 292, 17 (2005).

    Article  Google Scholar 

  36. M.A. Nazir, M. Ul-Islam, I. Ali, H. Ali, B. Ahmad, S.M. Ramay, N. Raza, M.F. Ehsan, and M.N. Ashiq, J. Electron. Mater. 45, 1065 (2015).

    Article  Google Scholar 

  37. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.-L. Rehspringer, and M. Kurmoo, Chem. Mater. 16, 5689 (2004).

    Article  Google Scholar 

  38. N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, and B. Jeyadevan, J. Phys. Condens. Matter 19, 386201 (2007).

    Article  Google Scholar 

  39. S.S. Bellad and B.K. Chougule, Mater. Chem. Phys. 66, 58 (2000).

    Article  Google Scholar 

  40. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, and R.G. Mendiratta, Mater. Sci. Eng. B 116, 1 (2005).

    Article  Google Scholar 

  41. E.V. Gopalan, K.A. Malini, S. Sagar, D.S. Kumar, Y. Yasuhiko, I.A. Al-Omari, and M.R. Anantharaman, J. Phys. D 42, 165005 (2009).

    Article  Google Scholar 

  42. K.M. Batoo, S. Kumar, C.G. Lee, and Curr Alimuddin, Appl. Phys. 9, 826 (2009).

    Google Scholar 

  43. B. Baruwati, R.K. Rana, and S.V. Manorama, J. Appl. Phys. 101, 014302 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mujtaba Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Shah, S.M., Ashiq, .N. et al. Fabrication of Nd3+ and Mn2+ ions Co-doped Spinal Strontium Nanoferrites for High Frequency Device Applications. J. Electron. Mater. 45, 4979–4988 (2016). https://doi.org/10.1007/s11664-016-4653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4653-8

Keywords

Navigation