Skip to main content
Log in

Structural, Electrical, and Dielectric Properties of Multiferroic–Spinel Ferrite Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present work reports development towards magnetoelectric ceramic composites, i.e., (1−x)Bi0.7Al0.3Mn0.3Fe0.7O3xLi0.3Zn0.4Fe2.3O4 with x = 0.0, 0.25, 0.35, 0.45, and 1.0. Al- and Mn-doped bismuth multiferroic Bi0.7Al0.3Mn0.3Fe0.7O3 (AMBFO) and Zn-doped lithium ferrite Li0.3Zn0.4 Fe2.3O4 (LZF) were synthesized by the coprecipitation and sol–gel method, respectively. The composite system was synthesized by the conventional solid-state reaction technique followed by heat treatment at 700°C for 6 h. X-ray diffraction (XRD) analysis confirmed the formation of orthorhombic and face-centered cubic phase structure in AMBFO and LZF, respectively. The presence of peaks from both systems in the XRD pattern confirmed composite formation. The metal-to-semiconductor transition temperature decreased from 340 K to 330 K with increase in the LZF content, being mainly due to spin canting and phase structure conversion. The direct-current (DC) electrical resistivity was found to be highest for pure AMBFO and then started to decrease with increase in the Li-Zn ferrite (LZF) content in the composites. The dielectric constant decreased with increase in frequency for all samples, in accordance with Koop’s phenomenological theory and the Debye relaxation model. However, the alternating-current (AC) conductivity increased with increase in frequency for all samples, which can be attributed to the conduction mechanism of polaron hopping. These composites open a new approach towards magnetoelectric applications, high-frequency devices, and semiconductor-based solar energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Fiebig, Phys. D: Appl. Phys. R123, 38 (2005).

    Google Scholar 

  2. Y.K. Fetisov, Bull. Russ. Acad. Sci. Phys. 71, 1626 (2007).

    Article  Google Scholar 

  3. H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, S. Yoon, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, and J.G. Park, Appl. Phys. Lett. 89, 102907 (2006).

    Article  Google Scholar 

  4. S.Y. Tan, S.R. Shannigrahi, S.H. Tan, and F.E.H. Tay, J. Appl. Phys. 103, 094105 (2008).

    Article  Google Scholar 

  5. R. Rani, J.K. Juneja, S. Singh, K.K. Raina, and C. Prakash, Adv. Mater. Lett. 5, 229 (2014).

    Google Scholar 

  6. P. Uniyal and K.L. Yadav, J. Alloys Compd. 492, 406 (2010).

    Article  Google Scholar 

  7. C.E. Ciomagaa, M. Airimioaei, V. Nica, L.M. Hrib, and O.F. Caltun, J. Eur. Ceram. Soc. 32, 3325 (2012).

    Article  Google Scholar 

  8. M.J. Iqbal and M.N. Ashiq, Chem. Eng. J. 136, 383 (2008).

    Article  Google Scholar 

  9. K.K. Mallick and J. Roger, J. Eur. Ceram. Soc. 27, 2045 (2007).

    Article  Google Scholar 

  10. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, and A.H. Naqvi, J. Alloys Compd. 509, 2909 (2011).

    Article  Google Scholar 

  11. A.A. Zaky, Dielectric Solids (London: Routledge and Kegan Paul, 1970).

    Google Scholar 

  12. S. Chauhan, M. Arora, P.C. Sati, S. Chhoker, S.C. Katyal, and M. Kumar, Ceram. Int. 39, 6399 (2013).

    Article  Google Scholar 

  13. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, and A. Banerjee, J. Phys. Condens. Matter 20, 045218 (2008).

    Article  Google Scholar 

  14. S.G.V. Rao and C.N.R. Rao, Appl. Spectrosc. 24, 436 (1970).

    Article  Google Scholar 

  15. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, and J.M. Munoz, J. Magn. Magn. Mater. 320, 881 (2008).

    Article  Google Scholar 

  16. Z. Wang, M. Okude, M. Saito, S. Tsukimoto, A. Ohtomo, M. Tsukada, M. Kawasaki, and Y. Ikuhara, Nat. Commun. 1, 106 (2010). doi:10.1038/ncomms1111.

    Article  Google Scholar 

  17. B. Ahmad, A. Mahmood, M.N. Ashiq, M.A. Malana, M.N. Haq, M.F. Ehsan, M.F. Warsi, and I. Shakir, J. Alloys Compd. 590, 193 (2014).

    Article  Google Scholar 

  18. M. Atif, M. Nadeem, R. Grossinger, and R.S. Turtelli, J. Alloys Compd. 509, 5720 (2011).

    Article  Google Scholar 

  19. G. Dong, G. Tann, W. Liu, A. Xia, and H. Ren, Ceram. Int. 40, 1919 (2014).

    Article  Google Scholar 

  20. X. Liu, Z. Xu, X.Y. Wei, and X. Yao, J. Am. Ceram. Soc. 93, 1245 (2010).

    Google Scholar 

  21. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, and M.M. Hassan, Ceram. Int. 38, 3829 (2012).

    Article  Google Scholar 

  22. Y.B. Feng, T. Qiu, and C.Y. Shen, J. Magn. Magn. Mater. 318, 8 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Muhammad Aamir Nazir is highly grateful to the Higher Education Commission (HEC) of Pakistan for financial support under Project No. 20-1515/R&D/09-8049. Shahid M. Ramay would like to extend sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research Group (No. RG 1435-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, M.A., Ul-Islam, M., Ali, I. et al. Structural, Electrical, and Dielectric Properties of Multiferroic–Spinel Ferrite Composites. J. Electron. Mater. 45, 1065–1072 (2016). https://doi.org/10.1007/s11664-015-4286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4286-3

Keywords

Navigation