Skip to main content
Log in

Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel-substituted manganese spinel ferrite NixMn1−xFe2O4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) nanoparticles have been prepared by sol–gel auto-combustion method. X-ray diffraction analysis reveals that prepared nanomaterials are spinel ferrite due to existence of secondary phase. The synthesis parameters such as molarity of reactants, magnetic stirring speed, temperature, amount of citric acid and annealing in ambient atmosphere have been optimized to control the crystallite size from 14 to 16 nm. The nickel substitution significantly affects the structural parameters such as lattice strain, micro-train, stacking fault and dislocation density. Dielectric properties were analyzed through impedance analyzer (LCR meter) for frequencies ranging from 1 kHz to 20 MHz and results depicted that synthesized nanoparticles respond to the electromagnetic radiations in terms of variation in tangent loss and dielectric constant as a function of Ni2+ content. This behavior is related to the microstructural differences among conducting grains and resistive grain boundaries that contribute to the dielectric relaxation in these nanoparticles. The structural, dielectric and impedance analysis suggested that these nickels incorporated manganese spinel ferrite nanoparticles would have potential applications in high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Dias, R.L. Moreira, Conductivity behavior of n-type semiconducting ferrites from hydrothermal powders. J. Mater. Res. 13(8), 2190–2194 (1998)

    Article  CAS  Google Scholar 

  2. S. Kumar et al., Multiferroic behaviour of Ti doped Mg0.95Mn0.05Fe2O4. Indian J. Pure Appl. Phys. 45(1), 31–36 (2007)

    CAS  Google Scholar 

  3. S. Bhargava, N Zeman (1980) Mössbauer study of Ni 0.25 Zn 0.75 Fe2O4. I. Spin fluctuations. Phys. Rev. B 21(5), 1717 (1980)

    Article  CAS  Google Scholar 

  4. K. Muraleedharan et al., On the magnetic ordering in the disordered spinels ZnxCo1-xFeCrO4. J. Phys. C 18(31), 5897 (1985)

    Article  CAS  Google Scholar 

  5. R. Brand, J. Lauer, D. Herlach, The evaluation of hyperfine field distributions in overlapping and asymmetric Mossbauer spectra: a study of the amorphous alloy Pd77.5-xCu6Si16.5Fex. J. Phys. F. 13(3), 675 (1983)

    Article  CAS  Google Scholar 

  6. J. Dormann, M. Nogues, Magnetic structures in substituted ferrites. J. Phys. 2(5), 1223 (1990)

    CAS  Google Scholar 

  7. H. Saqib et al., Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation. AIP Adv. 9(5), 055306 (2019)

    Article  Google Scholar 

  8. L.I. Granone et al., Effect of the degree of inversion on the electrical conductivity of spinel ZnFe2O4. ChemistrySelect 4(4), 1232–1239 (2019)

    Article  CAS  Google Scholar 

  9. A. Anwar et al., New Er3+ -substituted NiFe2O4 Nanoparticles and their nano-heterostructures with graphene for visible light-driven photo-catalysis and other potential applications. Curr. Nanosci. 15(3), 267–278 (2019)

    Article  CAS  Google Scholar 

  10. S. Nazir et al., Structural, spectral, dielectric and photocatalytic studies of Zr-Ni doped MnFe2O4 co-precipitated nanoparticles. Ceram. Int. 42(12), 13459–13463 (2016)

    Article  CAS  Google Scholar 

  11. M.D. Rahaman et al., Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016)

    Article  CAS  Google Scholar 

  12. K. Jalaiah, K.V. Babu, Structural, magnetic and electrical properties of nickel doped Mn–Zn spinel ferrite synthesized by sol–gel method. J. Magn. Magn. Mater. 423, 275–280 (2017)

    Article  CAS  Google Scholar 

  13. S. Kumar et al., Impedance spectroscopy study on Mn1+xFe2−2xTixO4 (0 ≤ x ≤ 0.5) ferrites. J. Central South Univ. Technol. 17(6), 1133–1138 (2010)

    Article  CAS  Google Scholar 

  14. M. Akhtar, M. Younas, Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method. Solid State Sci. 14(10), 1536–1542 (2012)

    Article  CAS  Google Scholar 

  15. H. Farooq et al., Structural and dielectric properties of manganese ferrite nanoparticles. J. Basic Appl. Sci. 8, 597–601 (2012)

    CAS  Google Scholar 

  16. G. Brahmachari, S. Laskar, P. Barik, Magnetically separable MnFe2O4 nano-material: an efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions. RSC Adv. 3(34), 14245–14253 (2013)

    Article  CAS  Google Scholar 

  17. N. Sanpo et al., Antibacterial properties of spinel ferrite nanoparticles. Microbial pathogens and strategies for combating them: science, technology and education (Formatex Research Centre, Spain, 2013), pp. 239–250

  18. M.Y. Lodhi et al., New Mg0.5CoxZn0.5−xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation. Curr. Appl. Phys. 14(5), 716–720 (2014)

    Article  Google Scholar 

  19. A.I. Ali et al., Effect of the La3+ ions substitution on the magnetic properties of spinal Li-Zn-ferrites at low temperature. J. Mater. Res. Technol. 2(4), 356–361 (2013)

    Article  CAS  Google Scholar 

  20. J. Li et al., Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater. 322(21), 3396–3400 (2010)

    Article  CAS  Google Scholar 

  21. J. Hu, I.M. Lo, G. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21(24), 11173–11179 (2005)

    Article  CAS  Google Scholar 

  22. S. Sam, A.S. Nesaraj, Preparation of MnFe2O4 nanoceramic particles by soft chemical routes. Int. J. Appl. Sci. Eng. 9(4), 223–239 (2011)

    Google Scholar 

  23. M.H. Habibi, F. Fakhri, Low temperature preparation, characterization, magnetic measurements, thermal, optical, morphological and photo-catalytic properties of nano-size single phase nickel ferrite NiFe2O4. J. Mater. Sci. 28(18), 13455–13463 (2017)

    CAS  Google Scholar 

  24. W. Zhang et al., Structural, morphological and magnetic properties of Ni–Co ferrites by the Mn2+ ions substitution. J. Mater. Sci. 30(20), 18729–18743 (2019)

    CAS  Google Scholar 

  25. K.V. Babu et al., Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ferrites. Physica B 534, 83–89 (2018)

    Article  CAS  Google Scholar 

  26. A.M. Kumar et al., Cation distribution in Co0.7Me0.3Fe2O4 (Me = Zn, Ni and Mn). J. Mod. Phys. 2(09), 1083 (2011)

    Article  CAS  Google Scholar 

  27. Z. Wu, M. Okuya, S. Kaneko, Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions. Thin Solid Films 385(1–2), 109–114 (2001)

    Article  CAS  Google Scholar 

  28. A. Raut et al., Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92 (2014)

    Article  CAS  Google Scholar 

  29. S. Assar, H. Abosheiasha, Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples. J. Magn. Magn. Mater. 374, 264–272 (2015)

    Article  CAS  Google Scholar 

  30. H. Zaki, H. Dawoud, Far-infrared spectra for copper–zinc mixed ferrites. Physica B 405(21), 4476–4479 (2010)

    Article  CAS  Google Scholar 

  31. K.A. Kumar, R. Bhowmik, Micro-structural characterization and magnetic study of Ni1.5Fe1.5O4 ferrite synthesized through coprecipitation route at different pH values. Mater. Chem. Phys. 146(1-2), 159–169 (2014)

    Article  CAS  Google Scholar 

  32. A.A. Hossain et al., Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites. Mater. Chem. Phys. 120(2-3), 461–467 (2010)

    Article  CAS  Google Scholar 

  33. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)

    Article  Google Scholar 

  34. N.B. Velhal et al., Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)

    Article  CAS  Google Scholar 

  35. S. Chakrabarty, M. Pal, A. Dutta, Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals. Mater. Chem. Phys. 153, 221–228 (2015)

    Article  CAS  Google Scholar 

  36. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2012)

    Google Scholar 

  37. R. Gimenes et al., Structural and magnetic characterization of MnxZn1−xFe2O4 (x = 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceram. Int. 38(1), 741–746 (2012)

    Article  CAS  Google Scholar 

  38. A. Volkov, A. Prokhorov, Broadband dielectric spectroscopy of solids. Radiophys. Quantum Electron. 46(8–9), 657–665 (2003)

    Article  Google Scholar 

  39. H.M. Chenari et al., Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO2 nanoparticles thick films. Curr. Appl. Phys. 11(3), 409–413 (2011)

    Article  Google Scholar 

  40. S. Li et al., Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate. Mater. Chem. Phys. 90(2–3), 262–269 (2005)

    Article  CAS  Google Scholar 

  41. I. Gul, E. Pervaiz, Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 47(6), 1353–1361 (2012)

    Article  CAS  Google Scholar 

  42. S. Assar, H. Abosheiasha, M. El Nimr, Study of the dielectric behavior of Co–Ni–Li nanoferrites. J. Magn. Magn. Mater. 350, 12–18 (2014)

    Article  CAS  Google Scholar 

  43. M. Hashim et al., Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511(1), 107–114 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saeed Akhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Channa, N., Khalid, M., Chandio, A.D. et al. Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications. J Mater Sci: Mater Electron 31, 1661–1671 (2020). https://doi.org/10.1007/s10854-019-02684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02684-0

Navigation