Skip to main content
Log in

Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The layered polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate (PPyGO-SDBS) nanocomposites were facilely fabricated via an in situ emulsion polymerization method with the assistance of SDBS as dopant and stabilizer. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and electrochemical performance were employed to analyze the structure and the characteristics of the composites. The results showed that SDBS played an important role in improving the electrochemical performance of the PPyGO-SDBS, by dispersing the PPy between the layers of the GO. The obtained PPyGO-SDBS exhibited remarkable performance as an electrode material for supercapacitors, with a specific capacitance as high as 483 F g−1 at a current density of 0.2 A g−1 when the mass ratio of pyrrole to GO was 80:20. The attenuation of the specific capacitance was less than 20 % after 1,000 charge–discharge processes, supporting the idea that PPy inserted successfully into the GO interlayers. The excellent electrochemical performance seemed to arise from the synergistic effect between the PPy and the GO and the dispersion of the PPy induced by SDBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  3. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  7. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  8. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  9. Dékány I, Krüger-Grasser R, Weiss A (1998) Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym Sci 276:570–576

    Article  Google Scholar 

  10. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    Article  CAS  Google Scholar 

  11. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525

    Article  CAS  Google Scholar 

  12. Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX (2010) Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv Mater 22:1731–1735

    Article  CAS  Google Scholar 

  13. Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10:933–935

    Article  CAS  Google Scholar 

  14. Zhang X, Yang W, Ma Y (2009) Synthesis of polypyrrole-intercalated layered manganese oxide nanocomposite by a delamination/reassembling method and its electrochemical capacitance performance. Electrochem Solid-State Lett 12:A95–A98

    Article  CAS  Google Scholar 

  15. Zhang LL, Zhao S, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624–17628

    Article  CAS  Google Scholar 

  16. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  17. Feng H, Wang B, Tan L, Chen N, Wang N, Chen B (2014) Polypyrrole/hxadecylpyridinium chloride-modified graphite oxide composites: fabrication, characterization, and application in supercapacitors. J Power Sources 246:621–628

    Article  CAS  Google Scholar 

  18. Konwer S, Boruah R, Dolui SK (2011) Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J Electron Mater 40:2248–2255

    Article  CAS  Google Scholar 

  19. Gu Z, Zhang L, Li C (2009) Preparation of highly conductive polypyrrole/graphite oxide composites via in situ polymerization. J Macromol Sci B 48:1093–1102

    Article  CAS  Google Scholar 

  20. Gu Z, Li C, Wang G, Zhang L, Li X, Wang W, Jin S (2010) Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J Polym Sci B Polym Phys 48:1329–1335

    Article  CAS  Google Scholar 

  21. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851–5857

    Article  CAS  Google Scholar 

  22. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186

    Article  CAS  Google Scholar 

  23. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z (2010) A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater 20:2893–2902

    Article  CAS  Google Scholar 

  24. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  25. Zhu C, Guo S, Fang Y, Han L, Wang E, Dong S (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648–657

    Article  CAS  Google Scholar 

  26. Zhu C, Guo S, Wang P, Xing L, Fang Y, Zhai Y, Dong S (2010) One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem Commun 46:7148–7150

    Article  CAS  Google Scholar 

  27. Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:295202–295210

    Article  Google Scholar 

  28. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928

    Article  CAS  Google Scholar 

  29. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53:923–932

    Article  CAS  Google Scholar 

  30. Li L, Xia K, Li L, Shang S, Guo Q, Yan G (2012) Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper. J Nanoparticle Res 14:1–8

    Google Scholar 

  31. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  32. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306

    Article  CAS  Google Scholar 

  33. Pandey GP, Hashmi SA, Kumar Y (2010) Multiwalled carbon nanotube electrodes for electrical double layer capacitors with ionic liquid based gel polymer electrolytes. J Electrochem Soc 157:A105–A114

    Article  CAS  Google Scholar 

  34. Pandey GP, Hashmi SA, Kumar Y (2010) Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy Fuels 24:6644–6652

    Article  CAS  Google Scholar 

  35. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307

    Article  CAS  Google Scholar 

  36. Li L, Qiu J, Wang S (2013) Three-dimensional ordered nanostructures for supercapacitor electrode. Electrochim Acta 99:278–284

    Article  CAS  Google Scholar 

  37. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  38. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    Article  CAS  Google Scholar 

  39. Jaidev RS (2012) Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J Mater Chem 22:18775–18738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the College Scientific Plan Fund of Shandong Education Department (J10LD23) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, M., Yang, L. et al. Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes. J Solid State Electrochem 18, 2139–2147 (2014). https://doi.org/10.1007/s10008-014-2469-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2469-0

Keywords

Navigation