Skip to main content

Advertisement

Log in

Nitrogen and phosphorous co-doped carbon nanotubes for high-performance supercapacitors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Nitrogen and phosphorous dual-doped carbon nanotubes (N,P/CNT) have been grown in a single-step direct synthesis process by CVD method using iron-loaded mesoporous SBA-15 support, as an electrode material for the energy storage device. For comparison, pristine nanotubes, nitrogen and phosphorous individually doped nanotubes were also prepared. The basic characterization studies clarify the formation of nanotubes and the elemental mapping tells about the presence of the dopant. Under three-electrode investigations, N,P/CNT produced a maximum specific capacitance of about 358.2 F/g at 0.5 A/g current density. The electrochemical performance of N,P/CNT was further extended by fabricating as a symmetric supercapacitor device, which delivers 108.6 F/g of specific capacitance for 0.5 A/g with 15 Wh/kg energy density and 250 W/kg power density. The observed energy efficiency of the device was 92.3%. The capacitance retention and coulombic efficiency were 96.2% and 90.6%, respectively, calculated over 5000 charge–discharge cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are available from the authors upon reasonable request.

References

  1. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 1:100003. https://doi.org/10.1016/j.sintl.2020.100003

    Article  Google Scholar 

  2. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220. https://doi.org/10.1016/j.nanoen.2011.11.006

    Article  CAS  Google Scholar 

  3. Allen BL, Kichambare PD, Star A (2008) Synthesis, charcterization and manipulation of nitrogen-doped carbon nanotube cups. ACS Nano 2:1914–1920

    Article  CAS  Google Scholar 

  4. Chizari K, Vena A, Laurentius L, Sundararaj U (2013) The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes. Carbon 68:369–379. https://doi.org/10.1016/j.carbon.2013.11.013

    Article  CAS  Google Scholar 

  5. Kokarneswaran M, Selvaraj P, Ashokan T, Perumal S (2020) Discovery of carbon nanotubes in sixth century BC potteries from Keeladi, India. Sci Rep 10:1–6. https://doi.org/10.1038/s41598-020-76720-z

    Article  CAS  Google Scholar 

  6. Iqbal S, Khatoon H, Pandit AH, Ahmad S (2019) Recent development of carbon based materials for energy storage devices. Mater Sci Energy Technol 2:417–428. https://doi.org/10.1016/j.mset.2019.04.006

    Article  Google Scholar 

  7. Larrude DG, Costa MEHM, Monteiro FH, Pinto AL, Freire FL (2012) Characterization of phosphorus-doped multiwalled carbon nanotubes. J Appl Phys 111:064315. https://doi.org/10.1063/1.3695452

    Article  CAS  Google Scholar 

  8. Zhang ZJ, Zheng QC, Sun L, Xu D, Chen XY (2017) Two-dimensional carbon nanosheets for high-performance supercapacitors: large-scale synthesis and codoping with nitrogen and phosphorus. Ind Eng Chem Res 56:12344–12353. https://doi.org/10.1021/acs.iecr.7b03022

    Article  CAS  Google Scholar 

  9. Cruz-silva E, Cullen DA, Gu L, Romo-herrera JM, Munoz-sandoval E, Lopezurias F, Sumpter BG, Meunier V, Charlier J, Smith DJ, Terrones H, Terrones M (2008) Heterodoped nanotubes: theory, synthesis, characteisation of phosphorous–nitrogen doped multiwalled carbon nanotubes. ACS Nano 2:441–448

    Article  CAS  Google Scholar 

  10. Vinodh R, Babu RS, Gopi CVVM, Deviprasath C, Atchudan R, Samyn LM, Barros ALF, Kim HJYM (2020) Influence of annealing temperatutre in nitrogen doped porous carbon balls derived from hypercross-linked polymer of anthracene for supercapacitor applications. J Energy Storage 28:101196

    Article  Google Scholar 

  11. Cruz-silva E, Lopez-urias F, Munoz-sandoval E, Sumpter BG, Terrones H, Charlier J, Terrones M (2011) Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale 3:1008–1013. https://doi.org/10.1039/c0nr00519c

    Article  CAS  Google Scholar 

  12. Huang C, Puziy AM, Poddubnaya OI, Hulicova-jurcakova D, Sobiesiak M, Gawdzik B (2018) Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochim Acta 270:339–351. https://doi.org/10.1016/j.electacta.2018.02.115

    Article  CAS  Google Scholar 

  13. Balamurugan J, Pandurangan A, Thangamuthu R, Senthilkumar SM (2013) Effective synthesis of well-graphitized carbon nanotubes on bimetallic SBA-15 template for use as counter electrode in dye-sensitized solar cells. Ind Eng Chem Res 52:384–393

    Article  CAS  Google Scholar 

  14. Ortega-Cervantez C, Rueda-Morales G, Ortiz-Lopez J (2005) Catalytic CVD production of carbon nanotubes using ethanol. Microelectronics J 36:495–498. https://doi.org/10.1016/j.mejo.2005.02.062

    Article  CAS  Google Scholar 

  15. Somanathan T, Pandurangan A (2010) Helical multiwalled carbon nanotubes (h-MWCNTs) synthesized by catalytic chemical vapor deposition. New Carbon Mater 25:175–180. https://doi.org/10.1016/S1872-5805(09)60024-X

    Article  CAS  Google Scholar 

  16. Dundar-tekkaya E, Karatepe N (2011) Production of carbon nanotubes by iron catalyst. Int J Mater Metall Eng 5:541–547

    Google Scholar 

  17. Hoyos-Palacio L, Garcia A, Perez-Robles J, Gonzalez J, Martinez-Tejada HV (2014) Catalytic effect of Fe, Ni, Co and Mo on the CNTs production. IOP Conf Ser Mater Sci Eng 59:012005

    Article  CAS  Google Scholar 

  18. Ragavan R, Pandurangan A (2017) Facile synthesis and supercapacitor performances of nitrogen doped CNTs grown over mesoporous Fe/SBA-15 catalyst. New J Chem 41:11591–11599. https://doi.org/10.1039/c7nj00804j

    Article  CAS  Google Scholar 

  19. Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z (2011) Nitrogen-promoted self-assembly of n-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5:1677–1684

    Article  CAS  Google Scholar 

  20. Poonam SK, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  21. Wu G, Tan P, Wang D, Li Z, Peng L, Hu Y, Wang C, Zhu W, Chen S, Chen W (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:1–8. https://doi.org/10.1038/srep43676

    Article  Google Scholar 

  22. Frackowiak E, Abbas Q (2013) Carbon/carbon supercapacitors. J Energy Chem 22:226–240. https://doi.org/10.1016/S2095-4956(13)60028-5

    Article  CAS  Google Scholar 

  23. Liu C, Liu Y, Yi T, Hu C (2019) Carbon materials for high-voltage supercapacitors. Carbon 145:529–548. https://doi.org/10.1016/j.carbon.2018.12.009

    Article  CAS  Google Scholar 

  24. Rangom Y, Tang XS, Nazar LF (2015) Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9:7248–7255

    Article  CAS  Google Scholar 

  25. Pan H, Li J, Ping Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668. https://doi.org/10.1007/s11671-009-9508-2

    Article  CAS  Google Scholar 

  26. Gonzalez A, Goikolea E, Andoni J, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  27. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  28. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/c5cs00303b

    Article  CAS  Google Scholar 

  29. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1:3807–3835. https://doi.org/10.1039/c9na00374f

    Article  Google Scholar 

  30. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G, Chmelka B, Stucky G (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  31. Atchudan R, Pandurangan A, Somanathan T (2009) Bimetallic mesoporous materials for high yield synthesis of carbon nanotubes by chemical vapour deposition techniques. J Mol Catal A Chem 309:146–152. https://doi.org/10.1016/j.molcata.2009.05.010

    Article  CAS  Google Scholar 

  32. Johnsirani D, Pandurangan A (2020) Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors. Diam Relat Mater 105:107800. https://doi.org/10.1016/j.diamond.2020.107800

    Article  CAS  Google Scholar 

  33. Huang H, Ji Y, Qiao Z, Zhao C, He JZH (2010) Preparation, characterization, and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves. J Autom Methods Manag Chem 2010:1–7

    Article  Google Scholar 

  34. Wang C, Zhou Y, Sun L, Wan P, Zhang X, Qiu J (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88. https://doi.org/10.1016/j.jpowsour.2013.03.126

    Article  CAS  Google Scholar 

  35. Zhou J, Ye S, Zeng Q, Yang H, Chen J, Guo Z, Jiang H, Rajan K (2020) Nitrogen and phosphorus co-doped porous carbon for for high-performance supercapacitors. Front Chem 8:1–8. https://doi.org/10.3389/fchem.2020.00105

    Article  CAS  Google Scholar 

  36. Kishore C, Pandurangan A (2014) Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory device. RSC Adv 4:9905–9911. https://doi.org/10.1039/c3ra45359f

    Article  CAS  Google Scholar 

  37. Zafar Z, Ni ZH, Wu X, Shi ZX, Nan HY, Bai J, Sun LT (2013) Evolution of Raman spectra in nitrogen doped graphene. Carbon 61:57–62. https://doi.org/10.1016/j.carbon.2013.04.065

    Article  CAS  Google Scholar 

  38. Jin J, Qiao X, Zhou F, Wu Z, Cui L, Fan H (2017) Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl Mater Interfaces 9:17317–17325. https://doi.org/10.1021/acsami.7b00617

    Article  CAS  Google Scholar 

  39. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2015) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085. https://doi.org/10.1039/C3TA14043A

    Article  Google Scholar 

  40. Yao Y, Zhang B, Shi J, Yang Q (2015) Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin. ACS Appl Mater Interfaces 7:7413–7420. https://doi.org/10.1021/acsami.5b01233

    Article  CAS  Google Scholar 

  41. Li X, Lv Z, Wu M, Li X, Li Z (2021) N, P co-doped porous carbon from cross-linking cyclophosphazene for high-performance supercapacitors. J Electroanal Chem 881:114952. https://doi.org/10.1016/j.jelechem.2020.114952

    Article  CAS  Google Scholar 

  42. Qiao X, Liao S, You C, Chen R (2015) Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 5:981–991. https://doi.org/10.3390/catal5020981

    Article  CAS  Google Scholar 

  43. Laschuk NO, Easton EB, Zenkina OV (2021) Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv 11:27925–27936. https://doi.org/10.1039/d1ra03785d

    Article  CAS  Google Scholar 

  44. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies. Graphene 2:81–87. https://doi.org/10.4236/graphene.2013.22012

    Article  CAS  Google Scholar 

  45. Lazanas AC, Prodromidis MI (2023) Electrochemical impedance spectroscopy—a tutorial. ACS Meas Sci Au. https://doi.org/10.1021/acsmeasuresciau.2c00070

    Article  Google Scholar 

  46. Eftekhari A (2017) Energy efficiency: a critically important but neglected factor in battery research. Sustain Energy Fuels 1:2053–2060. https://doi.org/10.1039/c7se00350a

    Article  CAS  Google Scholar 

  47. Xia K, Huang Z, Zheng L, Han B, Gao Q, Zhou C, Wang H, Wu J (2017) Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors. J Power Sources 365:380–388. https://doi.org/10.1016/j.jpowsour.2017.09.008

    Article  CAS  Google Scholar 

  48. Li Z, Wang Y, Xia W, Gong J, Jia S, Zhang J (2020) Nitrogen, phosphorus and sulfur co-doped pyrolyzed bacterial cellulose nanofibers for supercapacitors. Nanomaterials 10:1–13. https://doi.org/10.3390/nano10101912

    Article  CAS  Google Scholar 

  49. Chen B, Wu W, Li C, Wang Y, Zhang Y, Fu L, Zhu Y, Zhang L, Wu Y (2019) Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-41769-y

    Article  CAS  Google Scholar 

  50. Thirumal V, Pandurangan A, Jayavel R, Krishnamoorthi SR, Ilangovan R (2016) Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications. Curr Appl Phys 16:816–825. https://doi.org/10.1016/j.cap.2016.04.018

    Article  Google Scholar 

  51. Nasini UB, Gopal V, Ramashagayam SK, Bourdo SE, Viswanathan T, Shaikh AU (2014) Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J Power Sources 250:257–265. https://doi.org/10.1016/j.jpowsour.2013.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, D. Johnsirani acknowledges the Anna Centenary Research Fellowship (ACRF) funded by Anna University, Chennai for the financial support to carry out this work. The authors are thankful to the DST-FIST-sponsored Department of Chemistry, Anna University for providing the laboratory and instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandurangan Arumugam.

Ethics declarations

Conflict of interest

This work has no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 789 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarajan, J., Arumugam, P. Nitrogen and phosphorous co-doped carbon nanotubes for high-performance supercapacitors. Carbon Lett. 33, 1615–1627 (2023). https://doi.org/10.1007/s42823-023-00532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00532-0

Keywords

Navigation