Skip to main content
Log in

Laterally Inhomogeneous Barrier Analysis Using Capacitance–Voltage Characteristics of Identically Fabricated Schottky Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Au Schottky contacts (50 dots) on n-Si (100) were fabricated by thermal evaporation under the same conditions. The mean of the electrical parameters of the diodes were investigated by means of capacitance–voltage (CV) measurements at 1 MHz. Even if the diodes were all equally fabricated, there was a diode-to-diode change. The values of barrier height (ΦB) were determined from the C −2V characteristics, which ranged from 0.812 eV to 0.837 eV. The Gaussian fit of the barrier height distributions gave a mean of barrier height value of 0.822 eV and a standard value of 0.005 eV. Furthermore, the mean values of other parameters such as the carrier donor concentration (N D), the diffusion potential at zero bias (V 0), the Fermi level (E F), the image force lowering (ΔΦb) and the space charge layer width (W D) were investigated and determined to be 1.311 × 1015 cm−3, 0.575 V, 0.257 eV, 1.363 × 10−2 eV, and 7.573 × 10−5 cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

    Article  Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  3. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).

    Google Scholar 

  4. N. Tuğluoğlu, S. Karadeniz, S. Acar, and M. Kasap, Chinese Phys. Lett. 21, 1795 (2004).

    Article  Google Scholar 

  5. M. Şahin, H. Şafak, N. Tuğluoğlu, and S. Karadeniz, Appl. Surf. Sci. 242, 412 (2005).

    Article  Google Scholar 

  6. S. Karadeniz, N. Tuğluoğlu, M. Şahin, and H. Şafak, Microelectron. Eng. 81, 125 (2005).

    Article  Google Scholar 

  7. N. Tuğluoğlu, Nucl. Instrum. Meth. B 254, 118 (2007).

    Article  Google Scholar 

  8. E. Uğurel, Ş. Aydoğan, K. Şerifoğlu, and A. Türüt, Microelectron. Eng. 85, 2299 (2008).

    Article  Google Scholar 

  9. N. Tuğluoğlu and S. Karadeniz, Curr. Appl. Phys. 12, 1529 (2012).

    Article  Google Scholar 

  10. Ö.F. Yüksel, N. Tuğluoğlu, B. Gülveren, H. Şafak, and M. KuŞ, J. Alloys Compd. 577, 30 (2013).

    Article  Google Scholar 

  11. I.S. Yahia, S. Alfaify, F. Yakuphanoğlu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, J. Electron. Mater. 44, 2768 (2015).

    Article  Google Scholar 

  12. E. Ayyıldız, Ç. Nuhoğlu, and A. Türüt, J. Electron. Mater. 31, 119 (2002).

    Article  Google Scholar 

  13. B.J. Skromme, E. Luckowski, K. Moore, M. Bhatnagar, C.E. Weitzel, T. Gehoski, and D. Ganser, J. Electron. Mater. 29, 376 (2000).

    Article  Google Scholar 

  14. M. Yıldırım, N. Tuğluoğlu, Ö.F. Yüksel, A. Erdoğan, and M.␣Kuş, Mater. Today 3, 1255 (2015).

    Google Scholar 

  15. Ö.F. Yüksel, N. Tuğluoğlu, F. Çalışkan, and M. Yıldırım, Mater. Today 3, 1271 (2015).

    Article  Google Scholar 

  16. J.J. Osvald, Appl. Phys. 851, 935 (1999).

    Google Scholar 

  17. T.U. Kampen and W. Mönch, Surf. Sci. 331–3, 490 (1995).

    Article  Google Scholar 

  18. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  19. S. Chand and J. Kumar, J. Appl. Phys. 82, 5005 (1997).

    Article  Google Scholar 

  20. R.T. Tung, Mater. Sci. Eng. R 35, 1 (2001).

    Article  Google Scholar 

  21. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G. Ru, X. Qu, and B. Li, Solid-State Electron. 44, 663 (2000).

    Article  Google Scholar 

  22. G. Güler, Ş. KarataŞ, Ö. Güllü, and Ö.F. Bakkaloğlu, J.␣Alloys Compd. 486, 343 (2009).

    Article  Google Scholar 

  23. B. Güzeldir, M. Sağlam, and A. Ateş, Microelectron. Reliab. 51, 2179 (2011).

    Article  Google Scholar 

  24. Ö. Güllü, Ö. Barış, M. Biber, and A. Türüt, Appl. Surf. Sci. 254, 3039 (2008).

    Article  Google Scholar 

  25. Ö. Güllü, M. Biber, and A. Türüt, J. Mater. Sci. 19, 986 (2008).

    Google Scholar 

  26. M. Sağlam, F.E. Cimilli, and A. Türüt, Phys. B 348, 397 (2004).

    Article  Google Scholar 

  27. S. Duman, S. Doğan, B. Gürbulak, and A. Türüt, Appl. Phys. A 91, 337 (2008).

    Article  Google Scholar 

  28. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, and F.␣Cardon, Solid-State Electron. 29, 633 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihat Tuğluoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, Ş., Tuğluoğlu, N., Akgül, K.B. et al. Laterally Inhomogeneous Barrier Analysis Using Capacitance–Voltage Characteristics of Identically Fabricated Schottky Diodes. J. Electron. Mater. 45, 3908–3913 (2016). https://doi.org/10.1007/s11664-016-4546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4546-x

Keywords

Navigation