Skip to main content
Log in

Detailed Analysis of Device Parameters by Means of Different Techniques in Schottky Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, the detailed device parameters of Au/n-Si (100)/Al Schottky devices are calculated by means of the conductance–voltage–frequency (GVf), capacitance–voltage–frequency (CVf) and current–voltage (IV) measurements at 300 K. The structure of the device shows a good rectifying behavior. The barrier height \(\left( {\Phi_{\rm{B}} } \right)\) value of 0.822 eV from the CV is determined to be higher than the 0.774 eV from the IV. The barrier height \(\left( {\Phi_{\rm{B}} } \right)\) and series resistance \(\left( {R_{\rm{s}} } \right)\) values of the sample determined from the Cheung and Cheung technique are 0.755 eV and 220.5 Ω, respectively. The values of the carrier donor concentration (\(N_{\rm{D}}\)), the level of Fermi (\( E_{\rm{F}}\)), the lowering of image force (\(\Delta \Phi_{\rm{b}}\)), the space charge layer width (\( W_{\rm{D}}\)) and the maximum electric field (\(E_{\rm{max}}\)) are determined as 1.305 × 1015 cm−3, 0.258 eV, 0.0136 eV, 7.6 × 10−5 cm and 1.52 × 104 V/cm, respectively. The density of the interface state \((N_{\rm{ss}})\) determined from the IV characteristic ranges from 8.80 × 1012 eV−1 cm−2 to 5.44 × 1011 eV−1 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  2. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).

    Google Scholar 

  3. S. Karadeniz, B. Barış, Ö.F. Yüksel, and N. Tuğluoğlu, Synth. Met. 168, 16 (2013).

    Article  Google Scholar 

  4. N. Tuğluoğlu, F. Yakuphanoğlu, and S. Karadeniz, Physica B 393, 56 (2007).

    Article  Google Scholar 

  5. F. Yakuphanoğlu, N. Tuğluoğlu, and S. Karadeniz, Physica B 392, 188 (2007).

    Article  Google Scholar 

  6. N. Tuğluoğlu, B. Barış, H. Gürel, S. Karadeniz, and Ö.F. Yüksel, J. Alloys Compd. 582, 696 (2014).

    Article  Google Scholar 

  7. M. Şahin, H. Şafak, N. Tuğluoğlu, and S. Karadeniz, Appl. Surf. Sci. 242, 412 (2005).

    Article  Google Scholar 

  8. E. Uğurel, Ş. Aydoğan, K. Şerifoğlu, and A. Türüt, Microelectron. Eng. 85, 2299 (2008).

    Article  Google Scholar 

  9. N. Tuğluoğlu, S. Karadeniz, and Ş. Altındal, Appl. Surf. Sci. 239, 481 (2005).

    Article  Google Scholar 

  10. I.S. Yahia, S. Alfaify, F. Yakuphanoğlu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, J. Electron. Mater. 44, 2768 (2015).

    Article  Google Scholar 

  11. E. Ayyıldız, Ç. Nuhoğlu, and A. Türüt, J. Electron. Mater. 31, 119 (2002).

    Article  Google Scholar 

  12. B.J. Skromme, E. Luckowski, K. Moore, M. Bhatnagar, C.E. Weitzel, T. Gehoski, and D. Ganser, J. Electron. Mater. 29, 376 (2000).

    Article  Google Scholar 

  13. Ş. Karataş, N. Yıldırım, and A. Türüt, Superlattices Microstruct. 64, 483 (2013).

    Article  Google Scholar 

  14. Sh Rahmatallahpur and M. Yegane, Physica B 406, 1351 (2011).

    Article  Google Scholar 

  15. V. Janardhanam, Y.-K. Park, K.-S. Ahn, and C.-J. Choi, J. Alloys Compd. 534, 37 (2012).

    Article  Google Scholar 

  16. K. Akkılıç, T. Kılıçoğlu, and A. Türüt, Physica B 337, 388 (2003).

    Article  Google Scholar 

  17. M. Siad, A. Keffous, S. Mamma, Y. Belkacem, and H. Menari, Appl. Surf. Sci. 236, 366 (2004).

    Article  Google Scholar 

  18. M. Yıldırım, N. Tuğluoğlu, Ö.F. Yüksel, A. Erdoğan, and M. Kuş, in Proceedings of the Materials Today, vol. 3 (2015), p.␣1255.

  19. Ö.F. Yüksel, N. Tuğluoğlu, F. Çalışkan, and M. Yıldırım, in Proceedings of the Materials Today, vol. 3 (2015), p. 1271.

  20. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  21. E.H. Nicollian and J.R. Brews, MOS (Metal/Oxide/Semiconductor) Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  22. W.A. Hill and C.C. Coleman, Solid-State Electron. 23, 987 (1980).

    Article  Google Scholar 

  23. N. Tuğluoğlu, S. Karadeniz, M. Şahin, and H. Şafak, Appl. Surf. Sci. 233, 320 (2004).

    Article  Google Scholar 

  24. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  25. N. Tuğluoğlu, Ö.F. Yüksel, S. Karadeniz, and H. Şafak, Mater. Sci. Semicond. Process. 16, 786 (2013).

    Article  Google Scholar 

  26. N. Tuğluoğlu and S. Karadeniz, Curr. Appl. Phys. 12, 1529 (2012).

    Article  Google Scholar 

  27. B. Güzeldir, M. Sağlam, A. Ateş, and A. Türüt, J. Phys. Chem. Solids 72, 1506 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by BAP Office of Gazi University under Contract No. 05/2013-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nihat Tuğluoğlu or Haluk Koralay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuğluoğlu, N., Koralay, H., Akgül, K.B. et al. Detailed Analysis of Device Parameters by Means of Different Techniques in Schottky Devices. J. Electron. Mater. 45, 3859–3865 (2016). https://doi.org/10.1007/s11664-016-4580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4580-8

Keywords

Navigation