Skip to main content
Log in

Investigation of inhomogeneous device parameters by current–voltage characteristics of identically prepared lateral Schottky diodes with tin oxide interface layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have identically produced 70 dots of Au/SnO2/n-Si Schottky diodes using spray deposition method and investigated the mean values of diode parameters using current–voltage (I–V) measurements at room temperature. The ideality factor (n) and barrier height (\({\varPhi }_\text{B}\)) calculated using thermionic emission model were determined to be temperature dependent. The \({\varPhi }_\text{B}\) and \(n\) for 70 dots of the varied from diode to diode have ranged from 0.672 to 0.729 eV and 2.60 to 2.97, respectively. Mean ideality factor and barrier height values were found as 2.76 and 0.700 eV, respectively. We have estimated a lateral homogeneous barrier height value of 0.746 eV for 70 dots of the Au/SnO2/n-Si diodes from the linear relationship between the experimental ideality factors and barrier heights. The correlation between \({\varPhi }_\text{B}\) and \(n\) of the identically fabricated the diodes was clarified by lateral inhomogeneities of \({\varPhi }_\text{B}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C.S. Guclu, A.F. Ozdemir, S. Altindal, Appl. Phys. A 122, 325–330 (2016)

    Article  Google Scholar 

  2. A. Turut, A. Karabulut, H. Efeoglu, J. Mater. Sci.: Mater. Electron. 32, 22680–22688 (2021)

    CAS  Google Scholar 

  3. C. Bilkan, Y. Azizian-Kalandaragh, O. Sevgili, S. Altindal, J. Mater. Sci.: Mater. Electron. 30, 20479–20488 (2019)

    CAS  Google Scholar 

  4. A. Ashery, A.E.H. Gaballah, J. Mater. Sci.: Mater. Electron. 33, 11194–11211 (2022)

    CAS  Google Scholar 

  5. S. Mondal, A. Ghosh, S. Dwivedi, A. Dalal, A. Mondal, Mater. Sci. Semicond. Process. 130, 105834 (2021)

    Article  CAS  Google Scholar 

  6. O. Pakma, N. Serin, T. Serin, S. Altindal, J. Appl. Phys. 104, 105501 (2008)

    Article  Google Scholar 

  7. F.D. Akgul, S. Eymur, U. Akin, O.F. Yuksel, H. Karadeniz, N. Tugluoglu, J. Mater. Sci.: Mater. Electron. 32, 15857–15863 (2021)

    CAS  Google Scholar 

  8. A. Ashery, S.A. Gad, H. Shaban, Appl. Phys. A 126, 547 (2020)

    Article  CAS  Google Scholar 

  9. S. Galioglu, I. Karaduman, T. Corlu, B. Akata, M.A. Yildirim, A. Ates, S. Acar, J. Mater. Sci.: Mater. Electron. 29, 1356–1368 (2018)

    CAS  Google Scholar 

  10. N. Nazarudin, N. Rizan, N.A. Talik, V. Periasamy, H. Nakajima, S.A. Rahman, B.T. Goh, J. Mater. Sci.: Mater. Electron. 32, 7889–7905 (2021)

    CAS  Google Scholar 

  11. A.O. Tezcan, S. Eymur, E. Tasci, M. Emrullahoglu, N. Tugluoglu, J. Mater. Sci.: Mater. Electron. 32, 12513–12520 (2021)

    CAS  Google Scholar 

  12. B. Baris, H.G. Ozdemir, N. Tugluoglu, S. Karadeniz, O.F. Yuksel, Z. Kisnisci, J. Mater. Sci.: Mater. Electron. 25, 3586–3593 (2014)

    CAS  Google Scholar 

  13. S. Karadeniz, N. Tugluoglu, M. Sahin, H. Safak, Microelectron. Eng. 81, 125–131 (2005)

    Article  CAS  Google Scholar 

  14. L.B. Tasyurek, S. Aydogan, M. Sevim, Z. Caldiran, J. Mater. Sci.: Mater. Electron. 31, 20833–20846 (2020)

    CAS  Google Scholar 

  15. M. Biber, M. Cakar, A. Turut, J. Mater. Sci.: Mater. Electron. 12, 575–579 (2001)

    CAS  Google Scholar 

  16. S. Cavdar, N. Tugluoglu, K.B. Akgul, H. Koralay, J. Electron. Mater. 45, 3908–3913 (2016)

    Article  CAS  Google Scholar 

  17. A. Chawanda, K.T. Roro, F.D. Auret, W. Mtangi, C. Nyamhere, J. Nel, L. Leach, Mater. Sci. Semicond. Process. 13, 371–375 (2010)

    Article  CAS  Google Scholar 

  18. M. Saglam, A. Turut, Semicond. Sci. Technol. 12, 1028–1031 (1997)

    Article  CAS  Google Scholar 

  19. R.T. Tung, Mater. Sci. Eng. R 35, 1–138 (2001)

    Article  Google Scholar 

  20. R.T. Tung, Phys. Rev. B 45, 13509–13523 (1992)

    Article  CAS  Google Scholar 

  21. W. Monch, J. Vac. Sci. Technol. B 17, 1867–1876 (1999)

    Article  CAS  Google Scholar 

  22. R.F. Schmitsdorf, T.U. Kampen, W. Monch, J. Vac. Sci. Technol. B 15, 1221–1226 (1997)

    Article  CAS  Google Scholar 

  23. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403–7424 (1991)

    Article  CAS  Google Scholar 

  24. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)

    Article  CAS  Google Scholar 

  25. S. Asubay, O. Gullu, A. Turut, Vacuum 83, 1470–1474 (2009)

    Article  CAS  Google Scholar 

  26. S. Asubay, O. Gullu, A. Turut, Appl. Surf. Sci. 254, 3558–3561 (2008)

    Article  CAS  Google Scholar 

  27. A. Chandra Bose, D. Kalpana, P. Thangadurai, S. Ramasamy, J. Power Sources 107, 138–141 (2002)

    Article  Google Scholar 

  28. H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang, K.H. Yao, Nanotechnology 17, 2386–2389 (2006)

    Article  CAS  Google Scholar 

  29. T.-R. Ling, C.-M. Tsai, Sens. Actuators B 119, 497–503 (2006)

    Article  CAS  Google Scholar 

  30. A. Heiras-Trevizo, P. Amezaga-Madrid, L. Corral-Bustamante, W. Antunez-Flores, P.P. Ruiz, M. Miki-Yoshida, Thin Solid Films 638, 22–27 (2017)

    Article  CAS  Google Scholar 

  31. N. Tugluoglu, B. Baris, H. Gurel, S. Karadeniz, O.F. Yuksel, J. Alloys Compd. 582, 696–702 (2014)

    Article  CAS  Google Scholar 

  32. N. Tugluoglu, Nucl. Instrum. Methods Phys. Res. B 254, 118–124 (2007)

    Article  CAS  Google Scholar 

  33. N. Tugluoglu, H. Koralay, K.B. Akgul, S. Cavdar, Indian J. Phys. 90, 43–48 (2016)

    Article  CAS  Google Scholar 

  34. S. Altindal, A.F. Ozdemir, S. Aydogan, A. Turut, J. Mater. Sci.: Mater. Electron. 33, 12210–12223 (2022)

    CAS  Google Scholar 

  35. Y. Bilgen, O. Pakma, I.A. Kariper, S. Ozden, J. Mater. Sci.: Mater. Electron. 33, 16263–16271 (2022)

    CAS  Google Scholar 

  36. M. Sahin, H. Safak, N. Tugluoglu, S. Karadeniz, Appl. Surf. Sci. 242, 412–418 (2005)

    Article  CAS  Google Scholar 

  37. E. Erdogan, M. Yilmaz, S. Aydogan, U. Incekara, Y. Sahin, Opt. Mater. 121, 111613 (2021)

    Article  CAS  Google Scholar 

  38. D.A. Aldemir, M. Benhaliliba, C.E. Benouis, Optik 222, 165487 (2020)

    Article  CAS  Google Scholar 

  39. H. Cetin, B. Sahin, E. Ayyildiz, A. Turut, Physica B 364, 133–141 (2005)

    Article  CAS  Google Scholar 

  40. O. Gullu, M. Biber, A. Turut, J. Mater. Sci.: Mater. Electron. 19, 986–991 (2008)

    CAS  Google Scholar 

  41. A. Turut, N. Yalcin, M. Saglam, Solid·State Electron. 35, 835–841 (1992)

    Article  CAS  Google Scholar 

  42. S. Khalili, H.M. Chenari, Z. Orhan, F. Yildirim, S. Aydogan, Sens. Actuators A 342, 113631 (2022)

    Article  CAS  Google Scholar 

  43. M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid State Electron. 51, 941–949 (2007)

    Article  Google Scholar 

  44. M. Gokcen, S. Altindal, M. Karaman, U. Aydemir, Physica B 406, 4119–4123 (2011)

    Article  Google Scholar 

  45. A.M. Alsharari, S.I. Qashou, A.A.A. Darwish, M.M. El-Nahass, Thin Solid Films 704, 137977 (2020)

    Article  CAS  Google Scholar 

  46. A.A.A. Darwish, S.I. Qashou, E.F.M. El-Zaidia, I.S. Yahia, B.O. El-Bashir, R.A.S. Alatawi, T.A. Hamdalla, S. Alfadhli, Micro Nanostruct. 167, 207239 (2022)

    Article  CAS  Google Scholar 

  47. M.M. Makhlouf, H. Khallaf, M.M. Shehata, Appl. Phys. A 128, 98 (2022)

    Article  CAS  Google Scholar 

  48. A.M. Nawar, M. Abd-Elsalam, A.M. El-Mahalawy, M.M. El-Nahass, Appl. Phys. A 126, 113 (2020)

    Article  CAS  Google Scholar 

  49. H. Elamen, Y. Badali, M.T. Guneser, S. Altindal, J. Mater. Sci.: Mater. Electron. 31, 18640–18648 (2020)

    Google Scholar 

Download references

Acknowledgements

N. Tuğluoğlu acknowledges Giresun University BAP Project Office, Giresun, Turkey for a financial support (FEN-BAP-A-250221-21).

Funding

This work was supported by the Giresun University BAP Project Office (No: FEN-BAP-A-250221-21).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were completed by NT. The first draft of the manuscript was written by NT and NT, and the experimental tests were carried out by NT, SE and NT. The manuscript was revised by NT, SE and NT. All authors have commented on previous manuscript versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nihat Tuğluoğlu.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuğluoğlu, N., Eymur, S. & Turan, N. Investigation of inhomogeneous device parameters by current–voltage characteristics of identically prepared lateral Schottky diodes with tin oxide interface layer. J Mater Sci: Mater Electron 34, 160 (2023). https://doi.org/10.1007/s10854-022-09659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09659-8

Navigation