Skip to main content
Log in

Total Conductance of MIS Structures Based on Graded-Gap p-Hg1–х Cd х Te (x =0.22–0.23) Grown by Molecular Beam Epitaxy

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

Total conductance of MIS structures based on graded-gap p-Hg1–хCdхTe (x =0.22–0.23) grown by molecular beam epitaxy (MBE) is studied in a wide temperature range 8-300 K. It is found that for MIS structures based on graded-gap MBE p-Hg1–хCdхTe (x =0.23) doped with As to a concentration of 1017 сm–3, the differential resistance of space charge region in the temperature range 8–100 K is limited by the processes of tunnel generation of minority carriers. It is shown that for MIS structures based on graded-gap MBE p-Hg1–хCdхTe (x =0.22) with the hole concentration of (8–9)·1015 сm–3, the differential resistance of space charge region in the temperature range 30–90 K is limited by the processes of Shockley-Read generation, regardless of the presence of a graded-gap layer. At higher temperatures, the differential resistance of space-charge region is limited by processes of the minority carrier diffusion from the quasi-neutral bulk region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Сhu and A. Sher, Device Physics of Narrow Gap Semiconductors, Springer, New-York (2010).

    Google Scholar 

  2. A. Rogal’skii, Infrared Detectors [in Russian], Nauka, Novosibirsk (2003).

    Google Scholar 

  3. A. V. Voitsekhovskii and V. N. Davydov, Photoelectric MIS Structures based on Narrow-Gap Semiconductors [in Russian], Radio i Svyas, Tomsk (1990).

    Google Scholar 

  4. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Infrared Photodetector Arrays [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  5. V. V. Antonov, Investigation of Electrophysical and Photoelectric Characteristics of MIS Structures based on Mercury Cadmium Telluride, Thesis of Cand. Phys.- Math. Sci. [in Russian], Tomsk (1985).

  6. M. A. Kinch, Semicond. Semimet., 18 313–385 (1981).

    Article  Google Scholar 

  7. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE, 6636, 663617–663621 (2007).

    Article  Google Scholar 

  8. V. N. Ovsyuk and A. V. Yartsev, Prikladn. Fiz., No. 5, 80–83 (2007).

  9. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Fiz. Tekh. Poluprovodn., 42, No. 11, 1327–1332 (2008).

    Google Scholar 

  10. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Opto-Electron. Rev., 18, No. 3, 259–262 (2010).

    Article  ADS  Google Scholar 

  11. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Thin Solid Films, 522, 261–266 (2012).

    Article  ADS  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Thin Solid Films, 551, 92–97 (2014).

    Article  ADS  Google Scholar 

  13. W. He and Z. Celik-Butler, Solid-State Electron., 39, No. 1, 127–132 (1996).

    Article  ADS  Google Scholar 

  14. V. V. Vasil’ev and Yu. P. Mashukov, Fiz. Tekh. Poluprovodn., 41, No. 1, 38–43 (2007).

    Google Scholar 

  15. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, J. Vac. Sci. Technol., A7, No. 2, 523–527 (1989).

    Article  ADS  Google Scholar 

  16. M. J. Yang, C. H. Yang, M. A. Kinch, and J. D. Beck, Appl. Phys. Lett., 54, No. 3, 265–267 (1989).

    Article  ADS  Google Scholar 

  17. M. Zvara, R. Grill, P. Hlidek, et al., Semicond. Sci. Tecnol., No. 10, 1145–1150 (1995).

  18. Yu. G. Sidorov, S. A. Dvoretskii, N. N. Mikhailov, et al., Fiz. Tekh. Poluprovodn., No. 9, 1092–1101 (2001).

  19. V. S. Varavin, S. A. Dvoretskii, V. Ya. Kostyuchenko, et al., Fiz. Tekh. Poluprovodn., No. 5, 532–537 (2004).

  20. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J., 48, No. 6, 31–37 (2005).

    Article  Google Scholar 

  21. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J., 52, No. 10, 3–18 (2009).

    MathSciNet  Google Scholar 

  22. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russian Phys. J., 49, No. 10, 70–80 (2006).

    Article  Google Scholar 

  23. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russian Phys. J., 55, No. 8, 56–62 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 3–11, June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.М. et al. Total Conductance of MIS Structures Based on Graded-Gap p-Hg1–х Cd х Te (x =0.22–0.23) Grown by Molecular Beam Epitaxy. Russ Phys J 57, 707–716 (2014). https://doi.org/10.1007/s11182-014-0294-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0294-7

Keywords

Navigation