Skip to main content
Log in

Growth of HgTe Quantum Wells for IR to THz Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We zone-engineered HgCdTe/HgTe/HgCdTe quantum wells (QWs) using the molecular-beam epitaxy (MBE) method with in situ high-precision ellipsometric control of composition and thickness. The variations of ellipsometric parameters in the ψ–Δ plane were represented by smooth broken curves during HgTe QW growth with abrupt composition changes. The form of the spiral fragments and their extensions from fracture to fracture revealed the growing layer composition and its thickness. Single and multiple (up to 30) Cd x Hg1−x Te/HgTe/Cd x Hg1−x Te QWs with abrupt changes of composition were grown reproducibly on (013) GaAs substrates. HgTe thickness was in the range of 16 nm to 22 nm, with the central portion of Cd x Hg1−x Te spacers doped by In to a concentration of 1014 cm−3 to 1017 cm−3. Based on this research, high-quality (013)-grown HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared (terahertz radiation) to mid-infrared wavelengths. Detection was demonstrated for various low-power continuous-wave (CW) lasers and high-power THz pulsed laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kinch, J. Electron. Mater. 29, 809 (2000).

    Article  CAS  ADS  Google Scholar 

  2. J.N. Schulman and T.C. McGill, Appl. Phys. Lett. 34, 663 (1979).

    Article  CAS  ADS  Google Scholar 

  3. M.W. Goodwin, M.A. Kinch, and R.J. Koestner, J. Vac. Sci. Technol. A6, 2685 (1988).

    ADS  Google Scholar 

  4. E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, and A.L. Aseev, JETP Lett. 84, 565 (2006).

    Article  CAS  ADS  Google Scholar 

  5. Z.D. Kvon, E.B. Olshanetsky, D.A. Kozlov, N.N. Mikhailov, and S.A. Dvoretsky, JETP Lett. 87, 502 (2008).

    Article  CAS  ADS  Google Scholar 

  6. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, and Sh.-Ch. Zhang, Science 318, 766 (2007).

    Article  PubMed  ADS  Google Scholar 

  7. J.P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, J. Electron. Mater. 32, 602 (2003).

    Article  CAS  ADS  Google Scholar 

  8. Y.D. Zhou, C.R. Becker, Y. Selament, Y. Chang, R. Ashokan, R.T. Boreiko, T. Aoki, D.J. Smith, A.L. Betz, and S. Sivananthan, J. Electron. Mater. 32, 608 (2003).

    Article  CAS  ADS  Google Scholar 

  9. Y. Selament, Y.D. Zhou, J. Zhau, Y. Chang, C.R. Becker, R. Ashokan, C.H. Grein, and S. Sivananthan, J. Electron. Mater. 33, 503 (2004).

    Article  ADS  Google Scholar 

  10. C.H. Grein, H. Jung, R. Sindh, and M.E. Flatte, J. Electron. Mater. 34, 905 (2005).

    Article  CAS  ADS  Google Scholar 

  11. S.D. Ganichev and Prettl, Intense Terahertz Excitation of Semiconductors (Oxford: Oxford University Press, 2006).

    Google Scholar 

  12. S.D. Ganichev, J. Kiermaier, W. Weber, S.N. Danilov, D. Schuh, Ch. Gerl, W. Wegscheider, D. Bougeard, G. Abstreiter, and W. Prettl, Appl. Phys. Lett. 91, 091101 (2007).

    Article  ADS  Google Scholar 

  13. S.N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L.E. Golub, E.V. Beregulin, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, V.A. Shalygin, N.Q. Vinh, A.F.G. van der Meer, B. Murdin, and S.D. Ganichev, J. Appl. Phys. 105, 013106 (2009).

    Article  ADS  Google Scholar 

  14. C. Stellmach, R. Bonk, Yu.B. Vasilyev, A. Hirsch, G. Hein, C.R. Becker, and G. Nachtwei, Phys. Stat. Sol. (c) 3, 2510 (2006).

    Article  CAS  Google Scholar 

  15. V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Yu.G. Sidorov, M.V. Suslyyakov, A.O. Yakushev, and A.L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    CAS  Google Scholar 

  16. A.V. Rzhanov, K.K. Svitashev, A.A. Mardezhov, and V.A. Shvets, Doklady Akademii Nauk 297, 604 (1987).

    CAS  Google Scholar 

  17. N.N. Mikhailov, R.N. Smirnov, S.A. Dvoretsky, Yu.G. Sidorov, V.A. Shvets, E.V. Spesivtsev, and S.V. Rykhlitski, Int. J. Nanotechnol. 3, 120 (2006).

    CAS  Google Scholar 

  18. Yu.G. Sidorov, S.A. Dvoretski, N.N. Mikhailov, M.V. Yakushev, V.S. Varavin, and A.P. Antsiferov, J. Opt. Tech. 67, 31 (2000).

    CAS  Google Scholar 

  19. M. Yakushev, A. Babenko, D. Ikusov, V. Kartashov, N. Mikhailov, I. Sabinina, Yu. Sidorov, and V. Vasiliev, Proc. SPIE, 5957, 5957 OG (2005).

  20. V.S. Varavin, S.A. Dvoretskiĭ, D.G. Ikusov, N.N. Mikhailov, Yu.G. Sidorov, G.Yu. Sidorov, and M.V. Yakushev, Semiconductors 42, 648 (2008).

    Article  CAS  ADS  Google Scholar 

  21. E.V. Spesivtsev and S.V. Rykhlitski. Useful model “Ellipsometer”. Licence No 16314. Bulletin “Useful Models. Industrial Samples”, 35 (20. 12. 2000) (In Russian).

  22. S.A. Dvoretsky, D.G. Ikusov, D.Kh. Kvon, N.N. Mikhailov, N. Dai, R.N. Smirnov, Yu.G. Sidorov, and V.A. Shvets, Optoelectron. Instrum. Data Process. 43, 375 (2007).

    Article  Google Scholar 

  23. V.A. Svets, S.V. Rykhlitski, E.V. Spesivtsev, N.A. Aulchenko, N.N. Mikhailov, S.A. Dvoretsky, Yu.G. Sidorov, and R.N. Smirnov, Thin Solid Films 455–456, 688 (2004).

    Article  Google Scholar 

  24. K.K. Svitashev, S.A. Dvoretsky, Yu.G. Sidorov, and V.A. Shvets, Cryst. Res. Technol. 29, 931 (1994).

    Article  CAS  Google Scholar 

  25. V.A. Shvets, N.N. Mikhailov, M.V. Yakushev, and E.V. Spesivtsev, Proc. SPIE 4900, 46 (2002).

    Article  CAS  ADS  Google Scholar 

  26. H. Arwin and D.E. Aspnes, J. Vac. Sci. Technol. A2, 1316 (1984).

    ADS  Google Scholar 

  27. L. Vina, C. Umbach, M. Cardona, and L. Vodopjanov, Phys. Rev. B 29, 6752 (1984).

    Article  CAS  ADS  Google Scholar 

  28. S.A. Dvoretsky, D.G. Ikusov, Z.D. Kvon, N.N. Mikhailov, V.G. Remesnik, R.N. Smirnov, Yu.G. Sidorov, and V.A. Shvets, Semicond. Phys. Quantum Electr. Optoelectron. 10, 47 (2007).

    CAS  Google Scholar 

  29. A.V. Rzhanov, K.K. Svitashev, A.A. Mardezhov, and V.A. Shvets, Doklady Akademii Nauk 298, 862 (1988).

    CAS  Google Scholar 

  30. V.A.Shvets, Optika i spectroskopiya, 107, 844 (2009) (in Russian). Opt. Spectrosc. (English in press).

  31. Z.D. Kvon, S.N. Danilov, N.N. Mikhailov, S.A. Dvoretsky, and S.D. Ganichev, Physica E 40, 1885 (2008).

    Article  CAS  ADS  Google Scholar 

  32. K. Sakai, Terahertz Optoelectronics (Berlin: Springer, 2005).

    Book  Google Scholar 

  33. D.L. Woolard, J.O. Jensen, and R.J. Hwu, eds., Terahertz Science and Technology for Military and Security Applications (Singapore: World Scientific, 2007).

  34. M.I. Dyakonov, ed., Spin Physics in Semiconductors (in the Springer series in solid state sciences, ed. M. Cardona, P. Fulde, K. von Klitzing, R. Merlin, H.-J. Queisser, and H. Störmer) (Berlin: Springer, 2008).

  35. S.D. Ganichev, W. Weber, J. Kiermaier, S.N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, J. Appl. Phys. 103, 114504 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Grant RBFR 09-02-00467-a, Grant No. 27/28 from the Russian Academy of Sciences, and the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dvoretsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvoretsky, S., Mikhailov, N., Sidorov, Y. et al. Growth of HgTe Quantum Wells for IR to THz Detectors. J. Electron. Mater. 39, 918–923 (2010). https://doi.org/10.1007/s11664-010-1191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1191-7

Keywords

Navigation