Skip to main content
Log in

On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A method using fast hot pressing to join half-Heusler (HH) thermoelectric materials directly to an electrical current collector (Ag electrode) without using a third filler material is introduced. The compositions of the HH alloys used are Hf0.5Zr0.5CoSn0.2Sb0.8 and Ti0.6Hf0.4NiSn for p- and n-type, respectively. Using this method, the quality of the HH–electrode contacts is improved due to their low electrical contact resistance and less reaction–diffusion layer. The microstructure and chemical composition of the joints were examined using a scanning electron microscope equipped with energy-dispersive x-ray analysis. The electrical characteristics of the interfaces at the contacts were studied based on electrical contact resistance and Seebeck scanning microprobe measurements. In this paper, we show that joining the HH to a Ag electrode directly using fast hot pressing resulted in lower contact resistance and better performance compared with the method of using active brazing filler alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995), p. 3.

    Book  Google Scholar 

  2. W.H.A. Basel and I. Ismail, Recent Patents Electr. Eng. 2, 27 (2009).

    Article  Google Scholar 

  3. A. Sarhadi, B. Rasmus, and D. Pryds, J. Electron. Mater. 44, 4465 (2015).

    Article  Google Scholar 

  4. K.T. Wojciechowski, R. Zybala, and R. Mania, Microelectron. Reliab. 51, 1198 (2011).

    Article  Google Scholar 

  5. J.-P.F.T. Caillat, G.J. Snyder, A. Zoltan, D. Zoltan, and A. Borshchevsky, in 34th Intersoc. Energy Convers. Eng. Conf., p. 2567 (1999).

  6. L.T. Hung, N. Van Nong, S. Linderoth, and N. Pryds, Phys. Status Solidi 8, 767 (2015).

    Article  Google Scholar 

  7. L.T. Hung, N.V. Nong, G.J. Snyder, B. Balke, L. Han, R. Bjørk, P.H. Ngan, T.C. Holgate, S. Linderoth, and N. Pryds, Energy Technol. (2015). doi:10.1002/ente.201500176.

  8. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, and N. Pryds, Phys. Status Solidi 211, 9 (2014).

    Article  Google Scholar 

  9. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

    Article  Google Scholar 

  10. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 643 (2011).

    Article  Google Scholar 

  11. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2010).

    Article  Google Scholar 

  12. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  Google Scholar 

  13. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci. 5, 7543 (2012).

    Article  Google Scholar 

  14. P. Qiu, X. Huang, X. Chen, and L. Chen, J. Appl. Phys. 106, 103703 (2009).

    Article  Google Scholar 

  15. H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013).

    Article  Google Scholar 

  16. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 82105 (2005).

    Article  Google Scholar 

  17. S. Populoh, O. Brunko, K. Gałązka, W. Xie, and A. Weidenkaff, Mater. (Basel) 6, 1326 (2013).

    Article  Google Scholar 

  18. M. Mikami, K. Kobayashi, T. Kawada, K. Kubo, and N. Uchiyama, J. Electron. Mater. 38, 1121 (2009).

    Article  Google Scholar 

  19. M. Mikami, K. Kobayashi, and S. Tanaka, Mater. Trans. 52, 1546 (2011).

    Article  Google Scholar 

  20. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

    Article  Google Scholar 

  21. T.C. Holgate, L. Han, N. Wu, E.D. Bøjesen, M. Christensen, B.B. Iversen, N. Van Nong, and N. Pryds, J. Alloys Compd. 582, 827 (2014).

    Article  Google Scholar 

  22. J. García-Cañadas and G. Min, AIP Conf. Proc. 1449, 454 (2012).

    Article  Google Scholar 

  23. M. Masashi, K. Keizo, K. Tetsuya, K. Kazuya, and U. Naoki, Jpn. J. Appl. Phys. 47, 1512 (2008).

    Article  Google Scholar 

  24. Y. Zhu, K. Mimura, J.W. Lim, M. Isshiki, and Q. Jiang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 1231 (2006).

    Article  Google Scholar 

  25. Y. Zhu, K. Mimura, and M. Isshiki, Mater. Trans. 43, 2173 (2002).

    Article  Google Scholar 

  26. S.-M. Choi, K.-H. Kim, S.-M. Jeong, H.-S. Choi, Y. Lim, W.-S. Seo, and I.-H. Kim, J. Electron. Mater. 41, 1004 (2012).

    Article  Google Scholar 

  27. C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid-State Lett. 10, 23 (2007).

    Article  Google Scholar 

  28. R. Gupta, R. McCarty, and J. Sharp, J. Electron. Mater. 43, 1608 (2014).

    Article  Google Scholar 

  29. F.-D. Börner, M. Schreier, B. Feng, W. Lippmann, H.-P. Martin, A. Michaelis, and A. Hurtado, J. Mater. Res. 29, 1771 (2014).

    Article  Google Scholar 

  30. D. Zhao, C. Tian, S. Tang, Y. Liu, L. Jiang, and L. Chen, Mater. Sci. Semicond. Process. 13, 221 (2010).

    Article  Google Scholar 

  31. H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G.J. Snyder, J. Mater. Sci. 49, 1716 (2014).

    Article  Google Scholar 

  32. Y. Thimont, Q. Lognoné, C. Goupil, F. Gascoin, and E. Guilmeau, J. Electron. Mater. 43, 2023 (2014).

    Article  Google Scholar 

  33. E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014).

    Article  Google Scholar 

  34. F.C. Nix and D. MacNair, Phys. Rev. 61, 74 (1942).

    Article  Google Scholar 

  35. I. Karakaya and W.T. Thompson, J. Phase Equilib. 13, 143 (1992).

    Article  Google Scholar 

  36. O. Madelung, eds., Ag-Hf (Silver-Hafnium) Ag-Hf (New York: Landolt-Börnstein, 1991).

    Google Scholar 

  37. Z. Bahari, M. Elgadi, J. Rivet, and J. Dugué, J. Alloys Compd. 477, 152 (2009).

    Article  Google Scholar 

  38. X. Fu, C. Li, F. Wang, M. Li, and W. Zhang, Mater. Sci. Eng. A 408, 190 (2005).

    Article  Google Scholar 

  39. H. Okamoto, J. Phase Equilib. 23, 549 (2002).

    Article  Google Scholar 

  40. P.J.R. Subramanian and L. De, Bull. Alloy Phase Diagrams 10, 655 (1989).

    Google Scholar 

  41. Y.Y. Wu, W.P. Lin, and C.C. Lee, J. Mater. Sci. 23, 2235 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Copenhagen Cleantech Cluster for the research work (in Project 48062 X-CCC) and the Programme Commission on Energy and Environment (EnMi), which is part of the Danish Council for Strategic Research (Contract No. 10-093971), for sponsoring the research of the OTE-Power Project. We thank Professor Bo Brummerstedt Iversen for providing access to the potentional Seebeck microprobe Panco, which is sponsored by the Danish National Research Foundation (DNRF93). Benjamin Balke gratefully acknowledges the financial support by the DFG Priority Program 1386 “Nanostructured Thermoelectric Materials” under proposal BA 4171/2-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Hoang Ngan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngan, P.H., Van Nong, N., Hung, L.T. et al. On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloys. J. Electron. Mater. 45, 594–601 (2016). https://doi.org/10.1007/s11664-015-4156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4156-z

Keywords

Navigation