Skip to main content

Advertisement

Log in

Brief review of oxidation kinetics of copper at 350 °C to 1050 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Copper’s oxication mechanism and purity effects were elucidated by oxidizing 99.99 pct (4N), 99.9999 pct (6N), and floating zone refined (>99.9999 pct) specimens in 0.1 MPa oxygen at 350 °C to 1050 °C. Throughout the temperature range, the oxidation kinetics for all specimens obeys the parabolic oxidation rate law. The Cu2O scale grows predominantly, and the rate-determining step is concluded to be outward diffusion of copper atoms in Cu2O. The activation energy at high temperatures, where the lattice diffusion predominates, is 173 kJ/mol, but it becomes lower at intermediate temperatures and even lower at low temperatures because of the contribution of the grain boundary diffusion. At high temperatures, oxidation kinetics is almost uninfluenced by purity, but the lattice-diffusion temperature range is wider for higher-purity copper. At intermediate temperatures, copper oxidation is enhanced because trace impurities can impede growth of Cu2O grains to facilitate grain boundary diffusion. At low temperatures, grain boundary diffusion is possibly hindered by impurities segregated at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ronnquist and H. Fischmeister: J. Inst. Metals, 1960–61, vol. 89, pp. 65–76.

    CAS  Google Scholar 

  2. R.F. Tylecote: J. Inst. Metals, 1950–51, vol. 78, pp. 259–300.

    CAS  Google Scholar 

  3. O. Kubaschewski: Oxidation of Metals and Alloys, Academic Press Inc., New York, NY, 1962, pp. 249–53.

    Google Scholar 

  4. P. Kofstad: High Temperature Corrosion, Elsevier Science Publishing Co., Inc., New York, NY, 1988, pp. 162–239.

    Google Scholar 

  5. K. Hauffe: Oxidation of Metals, Plenum Press, New York, NY, 1965, pp. 159–70.

    Google Scholar 

  6. S. Mrowec and A. Stoklosa: Oxid. Metal., 1971, vol. 3, pp. 291–311.

    Article  CAS  Google Scholar 

  7. R.F. Tylecote: J. Inst. Metals, 1950–51, vol. 78, pp. 327–50.

    CAS  Google Scholar 

  8. D.W. Bridges, J.P. Baur, G.S. Baur, and W.M. Fassell: J. Electrochem. Soc., 1956, vol. 103, pp. 475–78.

    Article  CAS  Google Scholar 

  9. L. Czerski, S. Mrowec, and T. Werber: Roczniki Chem., 1964, vol. 38, pp. 643–54.

    CAS  Google Scholar 

  10. J.H. Park and K. Natesan: Oxid. Metal., 1993, vol. 39, pp. 411–35.

    Article  CAS  Google Scholar 

  11. P. Kofstad: Nature, 1957, vol. 179, pp. 1362–63.

    Article  CAS  Google Scholar 

  12. J.A. Sartell and C.H. Li: Trans. Am. Soc. Metall, 1962, vol. 55, pp. 158–62.

    CAS  Google Scholar 

  13. G. Valensi: Pittsburgh International Conf. on Surface Reactions, 1948, pp. 156–59.

  14. O. Kubaschewski and O.V. Goldbeck: Z. Metallk., 1946, vol. 39, pp. 158–264.

    Google Scholar 

  15. C. Gensch and K. Hauffe: Z. Phys. Chem., 1951, vol. 196, pp. 427–32.

    CAS  Google Scholar 

  16. G. Valensi: Metallurg. Ital., 1950, vol. 42, pp. 77–109.

    Google Scholar 

  17. V.B. Voitovich: Oxid. Metal., 1994, vol. 42, pp. 249–63.

    Article  CAS  Google Scholar 

  18. V.B. Voitovich: Oxid. Metal., 1994, vol. 42, pp. 223–37.

    Article  CAS  Google Scholar 

  19. D. Caplan, M.J. Graham, and M. Cohen: J. Electrochem. Soc., 1972, vol. 119, pp. 1205–13.

    Article  CAS  Google Scholar 

  20. Y. Zhu, K. Mimura, and M. Isshiki: Corros. Sci., 2005, vol. 47, pp. 537–44.

    Article  CAS  Google Scholar 

  21. Y. Zhu, K. Mimura, and M. Isshiki: Mater. Trans., 2002, vol. 43, pp. 2173–76.

    Article  CAS  Google Scholar 

  22. Y. Zhu, K. Mimura, and M. Isshiki: J. Electrochem. Soc., 2004, vol. 151, pp. B27–32.

    Article  CAS  Google Scholar 

  23. Y. Zhu: Ph.D. Thesis, Tohoku University, Japan, 2002.

    Google Scholar 

  24. Y.F. Zhu, K. Mimura, Y. Ishikawa, and M. Isshiki: Mater. Trans., 2002, vol. 43, pp. 2802–07.

    Article  CAS  Google Scholar 

  25. J. Paidassi: Acta Metall., 1958, vol. 6, pp. 216–19.

    CAS  Google Scholar 

  26. F. De Carli and N. Collari: Chim. Industr, 1951, vol. 33, pp. 77–83.

    Google Scholar 

  27. R.F. Tylecote: Metallurgia, 1956, vol. 53, pp. 191–97.

    CAS  Google Scholar 

  28. Y. Zhu, K. Mimura, and M. Isshiki: Corros. Sci., 2004, vol. 46, pp. 2445–54.

    Article  CAS  Google Scholar 

  29. Y. Zhu, K. Mimura, S.H. Hong, and M. Isshiki: J. Electrochem. Soc., 2005, vol. 152, pp. B296–301.

    Article  CAS  Google Scholar 

  30. Y. Zhu, M. Mimura, and M. Isshiki: Oxid. Met., 2003, vol. 59, pp. 575–90.

    Article  CAS  Google Scholar 

  31. W.W. Smeltzer, R.R. Haering, and J.S. Kirkaldy: Acta Metall., 1961, vol. 9, pp. 880–85.

    Article  CAS  Google Scholar 

  32. N.N. Khoi, W.W. Smeltzer, and J.D. Embury: J. Electrochem. Soc., 1975, vol. 122, p. 1495.

    Article  CAS  Google Scholar 

  33. Y. Shima, Y. Ishikawa, H. Nitta, Y. Yamazaki, K. Mimura, M. Isshiki, and Y. Iijima: Mater. Trans., 2002, vol. 43, pp. 173–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimura, K., Lim, JW., Isshiki, M. et al. Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall Mater Trans A 37, 1231–1237 (2006). https://doi.org/10.1007/s11661-006-1074-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1074-y

Keywords

Navigation