Skip to main content

Advertisement

Log in

Design of Apparatus for Ni/Mg2Si and Ni/MnSi1.75 Contact Resistance Determination for Thermoelectric Legs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent decades, thermoelectricity has been widely studied as a potential new source of renewable energy. One of the major challenges to improve the efficiency of thermoelectric (TE) devices is to minimize the contact resistance between the active material and the electrodes, since this represents the major loss of charge in a TE module. This article describes the fabrication of an apparatus for TE leg characterization built with commercial and custom-made parts based on the analog one-dimensional transmission-line method. This device permits contact resistance measurements of bulk TE legs. p- and n-type TE materials, Mg2Si0.98Bi0.02 and MnSi1.75Ge0.02, respectively, were metallized with nickel foils and used as test materials for contact resistance characterization. Contact resistance values of 0.5 mΩ mm2 for Ni/Mg2Si0.98Bi0.02 junctions and 4 mΩ mm2 for Ni/MnSi1.75Ge0.02 junctions have been measured. Contact resistance measurements are discussed depending on materials processing and the experimental measurement conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Berthebaud, F. Gascoin, and J. Solid State Chem. 202, 61 (2013).

    Article  Google Scholar 

  2. M. Iannou, K. Chrissafis, E. Pavlidou, F. Gascoin, and Th Kyratsi, J. Solid State Chem. 197, 172 (2013).

    Article  Google Scholar 

  3. S.M. Choi, K.-H. Kim, I.-H. Kim, S.-U. Kim, and W.-S. Seo, Curr. Appl. Phys. 11, 388 (2011).

    Article  Google Scholar 

  4. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, FYu Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).

    Article  Google Scholar 

  5. E. Savary, F. Gascoin, and S. Marinel, Dalton Trans. 39, 11074 (2010).

    Article  Google Scholar 

  6. H. Matino and M. Tokunaga, J. Electrochem. Soc. 116, 709 (1969).

    Article  Google Scholar 

  7. W. Edwards, Solid State Electron. 15, 387 (1972).

    Article  Google Scholar 

  8. C.-N. Liao, C.-H. Lee, and W.J. Chen, Electrochem. Solid State 10, 23 (2007).

    Article  Google Scholar 

  9. G. McConnell and R. Sehr, Solid State Electron. 2, 157 (1961).

    Article  Google Scholar 

  10. O.J. Mengali and M.R. Seiler, VDI Berichte 2, 59 (1962).

    Google Scholar 

  11. T. Sakamoto, K. Sugiyama, D. Mori, M. Ogi, K. Nishio, Y. Kogo, Y. Takanashi, and T. Iida, AIP Conf. Proc. 1449, 223 (2012).

    Article  Google Scholar 

  12. S.M. Gorodetskii, I.A. Drabkin, and I.V. Nelson, Ind. Lab+. 56, 820 (1991).

    Google Scholar 

  13. H.H. Berger, Solid State Electron. 15, 145 (1972).

    Article  Google Scholar 

  14. SolidWorks software, http://www.solidworks.com.

  15. L. Manolis Sherman, Plast. Technol. (2004).

  16. R. El Abdi and N. Benjemaa, Int. J. Syst. Appl. 2, 75 (2008).

  17. H.R. Hertz, J. Reine. Angew. Math. 92, 156 (1881).

    Google Scholar 

  18. T. Sakamoto, T. Lida, Y. Honda, M. Tada, T. Sekiguchi, K. Nishio, Y. Kogo, and Y. Takanashi, J. Electron. Mater. 41, 1805 (2012).

    Article  Google Scholar 

  19. X. Shi, Z. Zamanipour, and D. Vashaee, APS J., March Meeting 56 (2011).

Download references

Acknowledgements

The authors thank Benoît Bougle for apparatus design by SolidWorks software and for his important involvement in the innovative technical conception of the apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohann Thimont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thimont, Y., Lognoné, Q., Goupil, C. et al. Design of Apparatus for Ni/Mg2Si and Ni/MnSi1.75 Contact Resistance Determination for Thermoelectric Legs. J. Electron. Mater. 43, 2023–2028 (2014). https://doi.org/10.1007/s11664-013-2940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2940-1

Keywords

Navigation