Skip to main content
Log in

Thermoelectric Power-Generation Characteristics of PEDOT:PSS Thin-Film Devices with Different Thicknesses on Polyimide Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We fabricated cast films of complexes of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (PEDOT:PSS) at various thicknesses, t = 3–20 μm, on flexible polyimide substrates, and studied their thermoelectric properties. We also fabricated in-plane film devices consisting of five couples of PEDOT:PSS and Ag electrodes, measuring their output power characteristics as a function of film thickness. The Seebeck coefficient and electrical conductivity of a PEDOT:PSS film with a thickness of ∼20 μm on a polyimide substrate were ∼15 μV/K and 500 S/cm, respectively, near room temperature. As the film thickness decreased from ∼10 μm to 3 μm, the electrical conductivity increased remarkably to 1200 S/cm, while the Seebeck coefficient remained almost constant with film thickness. The maximum electric power for an in-plane PEDOT:PSS film device with a thickness of 10 μm was 1.3 μW at ΔT = 100 K. Its open-circuit voltage was 7.3 mV, and its internal resistance was 11 Ω. The measured power-generation characteristics of the film device agreed with values estimated from the dependence of thermoelectric properties on film thickness for PEDOT:PSS films on polyimide substrates. Assuming single PEDOT:PSS legs, defined as the direction of heat transport, we estimated the expected electrical power density at ΔT = 100 K as ∼650 μW/cm2 for a film thickness t = 10 μm, and 1400 μW/cm2 for t = 3 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (CRC, Boca Raton, 2006), Section I, p.1.

  2. S.J. Pomfret, P.N. Adams, N.P. Comfort, and A.P. Monkman, Adv. Mater. 10, 1351 (1998).

    Article  Google Scholar 

  3. M. Yamaura, T. Hagiwara, and K. Iwata, Synth. Met. 26, 209 (1988).

    Article  Google Scholar 

  4. M. Fabretto, C.J. Moncunill, J.-P. Autere, A. Michelmore, R.D. Short, and P. Murphy, Polymer 52, 1725 (2011).

    Article  Google Scholar 

  5. C. Badre, L. Marquant, A.M. Alsayed, and L.A. Hough, Adv. Funct. Mater. 22, 2723 (2012).

    Article  Google Scholar 

  6. Y. Xia, K. Sun, and J. Ouyang, Adv. Mater. 24, 2436 (2012).

    Article  Google Scholar 

  7. M.V. Fabretto, D.R. Evans, M. Mueller, K. Zuber, P.H. Talemi, R.D. Short, G.G. Wallace, and P.J. Murphy, Chem. Mater. 24, 3998 (2012).

    Article  Google Scholar 

  8. Y. Yang, Physical Properties of Polymers Handbook, 2nd ed. J.E. Mark (Springer, 2007), p. 155.

  9. H. Yan and N. Toshima, Chem. Lett. 28, 1217 (1999).

    Article  Google Scholar 

  10. H. Yan, N. Ohno, and N. Toshima, Chem. Lett. 29, 392 (2000).

    Article  Google Scholar 

  11. J.-Y. Kim, J.-H. Jung, D.-E. Lee, and J. Joo, Synth. Met. 126, 311 (2002).

    Article  Google Scholar 

  12. G. Zotti, S. Zecchin, G. Schiavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, and M. Fahlman, Macromolecules 36, 3337 (2003).

    Article  Google Scholar 

  13. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).

    Article  Google Scholar 

  14. M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, Appl. Phys. Lett. 99, 143307 (2011).

    Article  Google Scholar 

  15. C. Liu, J. Xu, B. Lu, R. Yue, and F. Kong, J. Electron. Mater. 41, 639 (2012).

    Article  Google Scholar 

  16. Q. Wei, M. Mukaida, Y. Naitoh, and T. Ishida, Adv. Mater. 25, 2831 (2013).

    Article  Google Scholar 

  17. G.-H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  Google Scholar 

  18. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahnd, and T. Gessnera, J. Mater. Chem. A 1, 7576 (2013).

    Article  Google Scholar 

  19. F. Kong, C. Liu, H. Song, J. Xu, Y. Huang, H. Zhu, and J. Wang, Synth. Met. 185–186, 31 (2013).

    Article  Google Scholar 

  20. O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P.H. Talemi, D. Dagnelund, J.-B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren, and X. Crispin, Nat. Mater. 13, 190 (2014).

    Article  Google Scholar 

  21. J. Luo, D. Billep, T. Blaudeck, E. Sheremet, R.D. Rodriguez, D.R.T. Zahn, M. Toader, M. Hietschold, T. Otto, and T. Gessner, J. Appl. Phys. 115, 054908 (2014).

    Article  Google Scholar 

  22. H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong, and J.H. Kim, J. Mater. Chem. A 2, 6532 (2014).

  23. S.H. Lee, H. Park, S. Kim, W. Son, I.W. Cheong, and J.H. Kim, J. Mater. Chem. A 2, 7288 (2014).

    Article  Google Scholar 

  24. M. Culebras, C.M. Gómez, and A. Cantarero, J. Mater. Chem. A 2, 10109 (2014).

    Article  Google Scholar 

  25. R.R. Søndergaard, M. Hösel, N. Espinosa, M. Jørgensen, and F.C. Krebs, Energy Sci. Eng. 1, 81 (2013).

  26. T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Energy Environ. Sci. 6, 788 (2013).

    Article  Google Scholar 

  27. N. Massonneta, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, J. Mater. Chem. C 2, 1278 (2014).

    Article  Google Scholar 

  28. Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Appl. Phys. Express 7, 031601 (2014).

    Article  Google Scholar 

  29. M. Hokazono, H. Anno, F. Akagi, M. Hojo, and N. Toshima, Trans. Mater. Res. Soc. Jpn 38, 309 (2013).

    Article  Google Scholar 

  30. M. Hokazono, H. Anno, and N. Toshima, J. Electron. Mater. 43, 2196 (2014).

    Article  Google Scholar 

  31. S. Kirchmeyer, A. Elschner, K. Reuter, W. Lövenich, and U. Merker, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (Boca Raton: CRC, 2011), pp. 113–166.

    Google Scholar 

  32. B. Cho, K.S. Park, J. Baek, H.S. Oh, Y.-E.K. Lee, and M.M. Sung, Nano Lett. 14, 3321 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Anno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anno, H., Nishinaka, T., Hokazono, M. et al. Thermoelectric Power-Generation Characteristics of PEDOT:PSS Thin-Film Devices with Different Thicknesses on Polyimide Substrates. J. Electron. Mater. 44, 2105–2112 (2015). https://doi.org/10.1007/s11664-015-3668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3668-x

Keywords

Navigation