Skip to main content
Log in

Impact of Thermal Aging on the Microstructure Evolution and Mechanical Properties of Lanthanum-Doped Tin-Silver-Copper Lead-Free Solders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An extensive study is made to analyze the impact of pure lanthanum on the microstructure and mechanical properties of Sn-Ag-Cu (SAC) alloys at high temperatures. Different compositions are tested; the temperature applied for the isothermal aging is 150°C, and aging times of 10 h, 25 h, 50 h, 100 h, and 200 h are studied. Optical microscopy with cross-polarized light is used to follow the grain size, which is refined from 8 mm to 1 mm for as-cast samples and is maintained during thermal aging. Intermetallic compounds (IMCs) present inside the bulk Sn matrix affect the mechanical properties of the SAC alloys. Due to high-temperature exposure, these IMCs grow and hence their impact on mechanical properties becomes more significant. This growth is followed by scanning electron microscopy, and energy-dispersive spectroscopy is used for elemental mapping of each phase. A significant refinement in the average size of IMCs of up to 40% is identified for the as-cast samples, and the coarsening rate of these IMCs is slowed by up to 70% with no change in the interparticle spacing. Yield stress and tensile strength are determined through tensile testing at 20°C for as-cast samples and after thermal aging at 150°C for 100 h and 200 h. Both yield stress and tensile strength are increased by up to 20% by minute lanthanum doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. Wood and K.L. Nimmo, J. Electron. Mater. 23, 709–713 (1994).

    Article  CAS  Google Scholar 

  2. D.Q. Yu, J. Zhao, and L. Wang, J. Alloys Compd. 376, 170–175 (2004).

    Article  CAS  Google Scholar 

  3. M.A. Rist, W.J. Plumbridge, and S. Cooper, J. Electron. Mater. 35, 1050–1058 (2006).

    Article  CAS  Google Scholar 

  4. M.A. Dudek, R.S. Sidhu, and N. Chawla, J. Mater. 657–62 (2006).

  5. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, and O. Unal, J. Electron. Mater. 30, 1050–1059 (2001).

    Article  CAS  Google Scholar 

  6. M. Pei and J. Qu, Proceedings of the 57th Electronic Components and Technology Conference, Reno, NV, 2007, pp. 198–204.

  7. Anon, Photonics Spectra, 36(5), 139 (2002).

  8. Z.G. Chen, Y. Shi, Z. Xia, and Y. Yan, J. Electron. Mater. 32, 235–243 (2003).

    Article  CAS  Google Scholar 

  9. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, J. Mater. Res. 31, 3146–3154 (2002).

    Article  Google Scholar 

  10. T. Chen and I. Dutta, J. Electron. Mater. 37, 347–354 (2008).

    Article  Google Scholar 

  11. M. Pei and J. Qu, J. Electron. Mater. 37, 331–338 (2008).

    Article  CAS  Google Scholar 

  12. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209–1215 (1999).

    Article  CAS  Google Scholar 

  13. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1–44 (2004).

    Article  Google Scholar 

  14. H. Hao, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 37, 2–8 (2008).

    Article  CAS  Google Scholar 

  15. X. Ma, Y. Qian, and F. Yoshida, J. Alloys Compd. 334, 224–227 (2002).

    Article  CAS  Google Scholar 

  16. C.M.L. Wu and Y.W. Wong, J. Mater. Sci. Mater. Electron. 18, 77–91 (2007).

    Article  CAS  Google Scholar 

  17. Z. Cai, Y. Zhang, J. Suhling, P. Lall, W. Johnson, M. Bozack, IEEE Electronic Components and Technology Conference (2010), pp. 1493–1511.

  18. D. Lewis, S. Allen, M. Notis, and A. Scotch, J. Electron. Mater. 31, 161–167 (2003).

    Article  Google Scholar 

  19. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106–114 (2002).

    Google Scholar 

  20. M. Sadiq, PhD Dissertation, Georgia Institute of Technology (2012).

  21. G.F. VanderVoort, ed., ASM Handbook vol. 9, Metallography and microstructures (ASM International, 2004).

  22. I. Dutta, J. Electron. Mater. 32, 201 (2003).

    Article  CAS  Google Scholar 

  23. S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci, D.J. Lewis, and R. Schaefer J. Mater. Res. 19(5), 1425–1431 (2004).

    Google Scholar 

  24. S.L. Allen, M.R. Notis, R.R. Chromik, and R.P. Vinci, J. Mater. Res. 19(5), 1417–1424 (2004).

    Google Scholar 

  25. E. Gebhardt and G. Petzow, J. Metall. 50, 597–605 (1959).

    CAS  Google Scholar 

  26. H. Baker, et al., eds., Alloy Phase Diagrams, ASM Handbook 3 (OH: Materials Park, 1990), p. 137.

    Google Scholar 

  27. C.M.T. Law, C.M.L. Wu, D.Q. Yu, K.Y. Lee, and M. Li, Proceedings of the Materials Science & Technology 2003 Conference, Chicago, 9–12 Nov (2003).

  28. C.-K. Lin and D.-Y. Chu, J. Mater. Sci. Mater. Electron. 16, 355–365 (2005).

    Google Scholar 

  29. Q.J. Zhai, S.K. Guan, and Q.Y. Shang, Alloy Thermo-Mechanism: Theory and Applications (Beijing: Metallurgy Industry Press, 1999).

    Google Scholar 

  30. A.U. Telang and T.R. Bieler, J. Electron. Mater. 33, 1412 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sadiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadiq, M., Pesci, R. & Cherkaoui, M. Impact of Thermal Aging on the Microstructure Evolution and Mechanical Properties of Lanthanum-Doped Tin-Silver-Copper Lead-Free Solders. J. Electron. Mater. 42, 492–501 (2013). https://doi.org/10.1007/s11664-012-2351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2351-8

Keywords

Navigation