Skip to main content
Log in

Irradiation-Induced Defects in Cd0.9Zn0.1Te:Al

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of gamma-irradiation, produced by a 60Co source with a dose of 2.7 kGy, on defect levels in a Cd0.9Zn0.1Te:Al (CZT:Al) crystal were investigated by thermally stimulated current spectroscopy. Nine observed defect levels were identified, and the irradiation-induced variations of trap signatures for these levels, i.e., the thermal activation energy, concentration, and capture cross-section, have been evaluated using simultaneous multiple peak analysis. In addition, the dark-current spectra dominated by the deep donor (E DD) level have been certified. By fitting plots of the logarithm of dark current ln(I DC) versus 1/kT, the E DD level is determined to be 0.554 ± 0.001 eV and 0.792 ± 0.004 eV before and after gamma-irradiation, respectively. One month after irradiation, the E DD level moved slightly to 0.782 ± 0.003 eV. This result indicates that the E DD level is closer to the middle of the bandgap of CZT:Al after irradiation, which should be responsible for Fermi-level pinning near the middle of the bandgap, leading to high resistivity. This is consistent with the resistivity variation of CZT:Al at room temperature from the original value of 7.5 × 109 Ω cm before irradiation to the irradiated value of 5.6 × 1010 Ω cm as determined by current–voltage measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng., R 32, 103 (2001).

    Article  Google Scholar 

  2. Y. Eisen and A. Shor, J. Cryst. Growth 184/185, 1302 (1998).

    CAS  Google Scholar 

  3. H. Hermon, M. Schieber, E.Y. Lee, J.L. McChesney, M. Goorsky, T. Lam, E. Meerson, H. Yao, J. Erickson, and R.B. James, Nucl. Instrum. Methods Phys. Res. A 458, 503 (2001).

    Article  CAS  Google Scholar 

  4. A. Cavallini, B. Fraboni, W. Dusi, M. Zanarini, M. Hage-Ali, and P. Siffert, J. Appl. Phys. 89, 4664 (2001).

    Article  CAS  Google Scholar 

  5. A. Cavallini, B. Fraboni, W. Dusi, M. Zanarini, and P. Siffert, Appl. Phys. Lett. 77, 3212 (2000).

    Article  CAS  Google Scholar 

  6. B. Fraboni, A. Cavallini, and W. Dusi, IEEE Trans. Nucl. Sci. 51, 1209 (2004).

    Article  CAS  Google Scholar 

  7. B. Fraboni, L. Pasquini, A. Castaldini, A. Cavallini, and P. Siffert, J. Appl. Phys. 106, 093713 (2009).

    Article  Google Scholar 

  8. B. Fraboni, D. Cavalcoli, A. Cavallini, and P. Fochuk, J. Appl. Phys. 105, 073705 (2009).

    Article  Google Scholar 

  9. R. Nan, W. Jie, G. Zha, T. Wang, Y. Xu, and W. Liu, J. Phys. D Appl. Phys. 43, 345104 (2010).

    Article  Google Scholar 

  10. G. Li, X. Zhang, H. Hua, and W. Jie, J. Electron. Mater. 34, 1215 (2005).

    Article  CAS  Google Scholar 

  11. M. Pavlovic, M. Jaksic, H. Zorc, and Z. Medunic, J. Appl. Phys. 104, 023525 (2008).

    Article  Google Scholar 

  12. C. Szeles, IEEE Trans. Nucl. Sci. 51, 1242 (2004).

    Article  CAS  Google Scholar 

  13. M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).

    Article  CAS  Google Scholar 

  14. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, J. Appl. Phys. 83, 2121 (1998).

    Article  CAS  Google Scholar 

  15. A. Carvalho, A.K. Tagantsev, S. Oberg, P.R. Briddon, and N. Setter, Phys. Rev. B 81, 075215 (2010).

    Article  Google Scholar 

  16. H. Elhadidy, J. Franc, E. Belas, P. Hlídek, P. Moravec, R. Grill, and P. Hoschl, J. Electron. Mater. 37, 1219 (2008).

    Article  CAS  Google Scholar 

  17. A. Cavallini, B. Fraboni, W. Dusi, and M. Zanarini, J. Appl. Phys. 94, 3135 (2003).

    Article  CAS  Google Scholar 

  18. W. Stadler, Phys. Rev. B 51, 10619 (1995).

    Article  CAS  Google Scholar 

  19. M.A. Berding, Phys. Rev. B 60, 8943 (1999).

    Article  CAS  Google Scholar 

  20. P. Emanuelsson, P. Omling, B. Meyer, M. Wienecke, and M. Schenk, Phys. Rev. B 47, 15578 (1993).

    Article  CAS  Google Scholar 

  21. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, Phys. Rev. B 54, 7622 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihua Nan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nan, R., Jie, W., Zha, G. et al. Irradiation-Induced Defects in Cd0.9Zn0.1Te:Al. J. Electron. Mater. 41, 3044–3049 (2012). https://doi.org/10.1007/s11664-012-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2204-5

Keywords

Navigation