Skip to main content
Log in

A modified vertical Bridgman method for growth of high-quality Cd1−xZnxTe crystals

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to deal with the phenomena of Cd evaporation from the raw materials and the heterogeneity caused by the larger-than-unity segregation coefficient of Zn in CdTe during the conventional vertical Bridgman method (VBM) growth of Cd1-xZnxTe (CZT), two modifications—Cd compensation and accelerated crucible rotation technique (ACRT)—are simultaneously adopted to the VBM. By a combination of VBM with the two modifications, several CZT ingots with the dimensions of ∼60×150 mm2 are grown. Structural, optical, and electrical characterization of the as-grown CZT crystals reveals that the application of Cd compensation and ACRT is of obvious efficiency in improving concentration homogeneity, reducing defect density, raising crystal quality and, therefore, upgrading the optoelectronic properties of CZT crystals. Nuclear spectra measurements of detectors fabricated from the as-grown crystals also indicate that both modifications can upgrade the detecting performance of CZT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James Mater. Sci. Eng. Rep. 32, 103 (2001).

    Article  Google Scholar 

  2. M. Fiederle, T. Feltgen, J. Meinhardt, M. Rogalla, and K.W. Benz, J. Cryst. Growth 197, 635 (1999).

    Article  CAS  Google Scholar 

  3. G.F. Neumark, Mater. Sci. Eng. Rep. 21, 1 (1997).

    Article  Google Scholar 

  4. Y. Eisen and A. Shor, J. Cryst. Growth 184, 1302 (1998).

    Google Scholar 

  5. A.E. Bolotnikov, C.M. Hubert Chen, W.R. Cook, F.A. Harrision, I. Kuvvetli, S.M. Schindler, C.M. Stahle, and B.H. Parker, Nucl. Instrum. Methods A 510, 300 (2003).

    Article  ADS  CAS  Google Scholar 

  6. A.S. Alikhanian, V.N. Guskov, A.M. Natarovsky, J.H. Greenberg, M. Fiederle, and K.W. Benz, J. Cryst. Growth 240, 73 (2002).

    Article  CAS  Google Scholar 

  7. S. Sen and J.E. Stannard, Progr. Cryst. Growth Characterization 29, 253 (1994).

    Article  CAS  Google Scholar 

  8. M. Fiederle, V. Babentsov, J. Franc, A. Fauler, and J.-P. Konrath, Cryst. Res. Technol. 38, 588 (2003).

    Article  CAS  Google Scholar 

  9. H.R. Vydyanath, J.A. Ellsworth, and R.F. Fisher, J. Electron. Mater. 22, 1067 (1993).

    CAS  Google Scholar 

  10. J.H. Greenberg, J. Cryst. Growth 197, 406 (1999).

    Article  CAS  Google Scholar 

  11. Z.J. Li, J. Appl. Phys. 90, 260 (2001).

    Article  ADS  CAS  Google Scholar 

  12. P. Rudolph, Progr. Cryst. Growth Characterization 29, 275 (1994).

    Article  CAS  Google Scholar 

  13. P. Capper, Progr. Cryst. Growth Characterization Mater. 28, 1 (1994).

    Article  CAS  Google Scholar 

  14. S. Kuppurao, S. Brandon, and J.J. Derby, J. Cryst. Growth 158, 459 (1996).

    Article  CAS  Google Scholar 

  15. X. Liu, W. Jie, and Y. Zhou, J. Cryst. Growth 219, 22 (2000).

    Article  Google Scholar 

  16. G. Li, W. Jie, T. Wang, and Z. Gu, Semicond. Sci. Technol. 19, 457 (2004).

    Article  ADS  CAS  Google Scholar 

  17. T.S. Moss, Handbook on Semiconductors (Amsterdam: North Holland Press Inc, 1980), pp. 681–689.

    Google Scholar 

  18. P. Rudolph, S. Kawasaki, S. Yamashita, Y. Usuki, Y. Konagaya, S. Matada, S. Yamamoto, and T. Fukuda, J. Cryst. Growth 149, 201 (1995).

    Article  CAS  Google Scholar 

  19. P. Rudolph, A. Engel, I. Schentke, and A. Grochocki, J. Cryst. Growth 147, 297 (1995).

    Article  CAS  Google Scholar 

  20. R.D.S. Yadava, B.S. Sundersheshu, M. Anandan, R.K. Bagai, and W.N. Borle, J. Electron. Mater. 23, 1349 (1994).

    CAS  Google Scholar 

  21. M. Azoulay, S. Petter, and G. Gafni, J. Cryst. Growth 101, 256 (1990).

    Article  CAS  Google Scholar 

  22. J.B. Mullin and B.W. Stranghan, Revue Phys. Appl. 12, 267 (1997).

    Google Scholar 

  23. Y. Li (Doctoral Dissertation, Northwestern Polytechnical University, 2002).

  24. Y.B. Qian, W.B. Sang, L.J. Wang, W.M. Shi, and J.H. Ming, Chin. J. Infrared 20, 17 (1998).

    Google Scholar 

  25. D. Feng, Condensed Matter Physics, Vol. 1: Structure and Defects (Beijing: Science Press, 1998), pp. 33–68.

    Google Scholar 

  26. K. Huang and R.Q. Han, Solid State Physics (Beijing: High Education Press, 2002), pp. 79–102.

    Google Scholar 

  27. M. Mühlberg, P. Rudolph, C. Genzel, B. Wermke, and U. Becker, J. Cryst. Growth 101, 275 (1990).

    Article  ADS  Google Scholar 

  28. G. Li, W. Jie, Z. Gu, and H. Hua, Chin. Phys. Lett. 20, 1600 (2003).

    Article  ADS  Google Scholar 

  29. M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).

    Article  MATH  ADS  CAS  Google Scholar 

  30. Y. Sun, Semiconductor Measurement Technology (Beijing: Metallurgy Industrial Press, 1984), pp. 563–580.

    Google Scholar 

  31. G. Li, W. Jie, T. Wang, and G. Yang, Nucl. Instrum. Methods A 53, 511 (2004).

    Article  ADS  Google Scholar 

  32. P. Cheuvat, U. El-Hanany, D. Schneider, and R. Triboulet, J. Cryst. Growth 138, 249 (1994).

    Article  Google Scholar 

  33. M.F. Li, Semiconductor Physics (Beijing: Science Press, 2000).

    Google Scholar 

  34. J.B. Xia, Current Semiconductor Physics (Beijing: Peking University Press, 2000), pp. 138–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Zhang, X., Hua, H. et al. A modified vertical Bridgman method for growth of high-quality Cd1−xZnxTe crystals. J. Electron. Mater. 34, 1215–1224 (2005). https://doi.org/10.1007/s11664-005-0266-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0266-3

Key words

Navigation