Skip to main content
Log in

Synthesis and Characterization of New Ceramic Thermoelectrics Implemented in a Thermoelectric Oxide Module

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Novel thermoelectric oxides were developed, produced, and characterized to demonstrate their promising thermoelectric conversion potential in a thermoelectric converter. Four-leg thermoelectric oxide modules were fabricated by combining p- and n-type oxide thermoelements made of pressed polycrystalline GdCo0.95Ni0.05O3 and CaMn0.98Nb0.02O3, respectively. In these modules, the p- and n-type thermoelements were connected electrically in series and thermally in parallel. The materials were joined by electrical contacts consisting of a Ag/CuO composite material. Fairly good thermal contacts were ensured by pressing the thermoelements between alumina substrates. Cross-sections of the alumina/Ag–CuO mixture/thermoelement interface were investigated by scanning electron microscopy. The temperature distribution across the module was monitored using K-type thermocouples and a micro-infrared (IR) camera. The open-circuit voltage and the load voltages of the module were measured up to a temperature difference of ΔT = 500 K while keeping the temperature of the cold side at 300 K. The output power and internal resistance were calculated. The characteristics of the module evaluated from electrical measurements were compared with respective values of the p- and n-type leg materials. An output power of 0.04 W at ΔT = 500 K led to a power density of ~0.125 W/cm3, where the volume of thermoelectric material was determined by a cross-section of 4 mm × 4 mm and a leg length of 5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.-D. Chung, W.-T. Hong, Y.-P. Chyou, D.-D. Yu, K.-F. Lin, and Ch.-H. Lee, Appl. Therm. Eng. 28, 933 (2008).

    Article  CAS  Google Scholar 

  2. S.S. Kim, F. Yin, and Y. Kagawa, J. Alloys Compd. 419, 306 (2006).

    Article  CAS  Google Scholar 

  3. E.S. Reddy, J.G. Noudem, S. Hebert, and C. Goupil, J. Phys. D: Appl. Phys. 38, 3751 (2005).

    Article  CAS  ADS  Google Scholar 

  4. W. Shin, N. Muruyama, K. Ikeda, and S. Sago, J. Power Sources 103, 80 (2001).

    Article  CAS  Google Scholar 

  5. R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, J. Appl. Phys. 99, 066117 (2006).

    Article  ADS  Google Scholar 

  6. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  ADS  Google Scholar 

  7. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and K. Mikami, Appl. Phys. Lett. 85, 1036 (2004).

    Article  CAS  ADS  Google Scholar 

  8. J. Hejtmánek, Z. Jirák, M. Maryško, C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B. 60, 14057 (1999).

    Article  ADS  Google Scholar 

  9. R. Robert, S. Romer, A. Reller, and A. Weidenkaff, Adv. Eng. Mater. 7, 303 (2005).

    Article  CAS  Google Scholar 

  10. A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, and L. Schlapbach, Phys. Status Solidi RRL Rapid Res. Lett. 1, 247 (2007). doi:10.1002/pssr.200701185.

    Article  CAS  ADS  Google Scholar 

  11. A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, T. Lippert, and S. Canulescu, Renew. Energy 33, 342 (2008).

    Article  CAS  Google Scholar 

  12. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. R. Robert, M.H. Aguirre, P. Hug, A. Reller, and A. Weidenkaff, Acta Mater. 55, 4965 (2007).

    Article  CAS  Google Scholar 

  14. L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, and A. Weidenkaff, Solid State Sci. 10, 496 (2008).

    Article  CAS  ADS  Google Scholar 

  15. A. Weidenkaff, Adv. Eng. Mater. 6, 709 (2004).

    Article  CAS  Google Scholar 

  16. E. Krupicka, A. Reller, and A. Weidenkaff, Cryst. Eng. 5, 195 (2002).

    Article  CAS  Google Scholar 

  17. S. Hébert, D. Flahaut, C. Martin, S. Lemonnier, J. Noudem, C. Goupil, A. Maignan, and J. Hejtmánek, Prog. Solid State Chem. 35, 457 (2007).

    Article  Google Scholar 

  18. M. Miclau, J. Hejtmánek, R. Retoux, K. Knížek, Z. Jirák, R. Frésard, A. Maignan, S. Hébert, M. Hervieu, and C. Martin, Chem. Mater. 19, 4243 (2007).

    Article  CAS  Google Scholar 

  19. R.M. do Nascimento, A.E. Martinelli, and A.J.A. Buschinelli, Cerâmica 49, 178 (2003). ISSN 0366-6913. doi:10.1590/S0366-69132003000400002.

  20. H.R. Elsener, J. Janczak-Rusch, V. Bissig, U.E. Klotz, and B. Zigerlig, Verbundwerkstoffe, ed. H.-G. Degischer (Weinheim: Wiley-VCH, 2006), pp. 738–743.

  21. J.Y. Kim, J.S. Hardy, and K.S. Weil, J. Am. Ceram. Soc. 88, 2521 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss Federal Office of Energy and the Swiss National Foundation. We would like to thank Dr. E. Hack for the IR measurement, and S. Toggweiler for his technical and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weidenkaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomeš, P., Robert, R., Trottmann, M. et al. Synthesis and Characterization of New Ceramic Thermoelectrics Implemented in a Thermoelectric Oxide Module. J. Electron. Mater. 39, 1696–1703 (2010). https://doi.org/10.1007/s11664-010-1214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1214-4

Keywords

Navigation