Skip to main content
Log in

Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Resistance–voltage curves of n +-on-p Hg1−x Cd x Te infrared photodiodes were measured in the temperature range of 60 K to 120 K. Characteristics obtained experimentally were fitted by an improved simultaneous-mode nonlinear fitting process. Based on the extracted parameters, an efficient numerical sim- ulation approach has been developed by inserting trap-assisted and band-to-band tunneling models into continuity equations as generation–recombination processes. Simulated dark-current characteristics were found to be in good agreement with the experimental data, demonstrating the validity of the nonlinear fitting process. Our work presents an efficient method for dark-current simulations over a wide range of temperatures and bias voltages, which is important for investigating mechanisms of carrier transport across the HgCdTe junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Norton, Opto-Electron. Rev. 10, 159 (2002).

    CAS  Google Scholar 

  2. V. Gopal and S. Gupta, IEEE Trans. Electron. Dev. 50, 1220 (2003).

    Article  CAS  ADS  Google Scholar 

  3. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  CAS  ADS  Google Scholar 

  4. N.H. Jo, S.D. Yoo, B.G. Ko, S.W. Lee, J. Jang, S.D. Lee, and K.D. Kwack, SPIE 3436, 50 (1998).

    Article  CAS  ADS  Google Scholar 

  5. V. Gopal, S. Gupta, R.K. Bhan, R. Pal, P.K. Chaudhary, and V. Kumar, Infrared Phys. Technol. 44, 143 (2003).

    Article  CAS  ADS  Google Scholar 

  6. S.C. Shen, Microelectron. J. 25, 713 (1994).

    Article  CAS  Google Scholar 

  7. A. Rogaski, Infrared Phys. 28, 53 (1988).

    Google Scholar 

  8. V. Gopal, S.K. Singh, and R.M. Mehra, Infrared Phys. Technol. 43, 317 (2002).

    Article  CAS  ADS  Google Scholar 

  9. A. Jozwikowska, K. Jozwikowski, J. Antoszewski, C.A. Musca, T. Nguyen, R.H. Sewell, J.M. Dell, L. Faraone, and Z. Orman, J. Appl. Phys. 98, 014504 (2005).

    Article  ADS  Google Scholar 

  10. P.Y. Emelie, J.D. Phillips, S. Velicu, and C.H. Grein, J. Electron. Mater. 36, 846 (2007).

    Article  CAS  ADS  Google Scholar 

  11. D. D’Orsogna, S.P. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).

    Article  ADS  Google Scholar 

  12. Z.J. Quan, Z.F. Li, W.D. Hu, Z.H. Ye, X.N. Hu, and W. Lu, J. Appl. Phys. 100, 084503 (2006).

    Article  ADS  Google Scholar 

  13. G.B. Chen, W. Lu, X.S. Chen, Z.F. Li, W.Y. Cai, L. He, X.N. Hu, and S.C. Shen, Semicond. Sci. Technol. 18, 887 (2003).

    Article  CAS  ADS  Google Scholar 

  14. L. He, J.R. Yang, S.L. Wang, S.P. Guo, M.F. Yu, X.Q. Chen, W.Z. Fang, Y.M. Qiao, Q.Y. Zhang, R.J. Ding, and T.L. Xin, J. Cryst. Growth 175/176, 677 (1997).

    Article  CAS  Google Scholar 

  15. T. Nguyen, C.A. Musca, J.M. Dell, J. Antoszewski, and L. Faraone, J. Electron. Mater. 33, 621 (2004).

    Article  CAS  ADS  Google Scholar 

  16. W.D. Hu, X.S. Chen, F. Yin, Z.J. Quan, Z.H. Ye, X.N. Hu, Z.F. Li, and W. Lu, J. Appl. Phys. 105, 104502 (2009).

    Article  ADS  Google Scholar 

  17. Z.H. Ye, X.N. Hu, W.Y. Cai, G.B. Chen, Q.J. Liao, H.Y. Zhang, and L. He, J. Infrared Millimeter Waves 24, 459 (2005).

    CAS  Google Scholar 

  18. M.C. Chen, L. Colombo, J.A. Dodge, and J.H. Tregilgas, J. Electron. Mater. 24, 539 (1995).

    Article  CAS  ADS  Google Scholar 

  19. H. Nishino, K. Ozaki, M. Tanaka, T. Saito, H. Ebe, and Y. Miyamoto, J. Cryst. Growth 214/215, 275 (2000).

    Article  CAS  Google Scholar 

  20. Device simulator, Sentaurus Device (former ISE-DESSIS) Ver. A-2008. 08.

  21. D. Rosenfeld and G. Bahir, IEEE Trans. Electron Devices ED39, 1638 (1992).

  22. Y. Nemirovsky, R. Fastow, M. Meyassed, and A. Unikovsky, J. Vac. Sci. Technol. B 9, 1829 (1991).

    Article  CAS  Google Scholar 

  23. D.H. Mao, H.G. Robinson, D.U. Bartholomew, and C.R. Helms, J. Electron. Mater. 26, 678 (1997).

    Article  CAS  ADS  Google Scholar 

  24. Y.H. Kim, S.H. Bae, H.C. Lee, and C.K. Kim, J. Electron. Mater. 29, 832 (2000).

    Article  CAS  ADS  Google Scholar 

  25. R.J. Westerhout, C.A. Musca, J. Antoszewski, J.M. Dell, and L. Faraone, J. Electron. Mater. 36, 884 (2007).

    Article  CAS  ADS  Google Scholar 

  26. G.M. Williams and R.E. De Wames, J. Electron. Mater. 24, 1239 (1995).

    Article  CAS  ADS  Google Scholar 

  27. V. Dhar and V. Gopal, Opt. Eng. 39, 2022 (2000).

    Article  CAS  ADS  Google Scholar 

  28. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  CAS  ADS  Google Scholar 

  29. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron. Dev. 48, 1326 (2001).

    Article  CAS  ADS  Google Scholar 

  30. K. Jozwikowski and A. Rogalski, J. Appl. Phys. 98, 014504 (2005).

    Article  ADS  Google Scholar 

  31. J.M. Dell, J. Antoszewski, M.H. Rais, C.A. Musca, B.D. Nener, and L. Faraone, J. Electron. Mater. 29, 841 (2000).

    Article  ADS  Google Scholar 

  32. T. Nguyen, C.A. Musca, J.M. Dell, J. Antoszewski, and L. Faraone, J. Electron. Mater. 32, 615 (2003).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (10725418, 10734090, 10990104, 60706012, 60976092, and 60811120169), the Aviation Science Fund (20080190001), and the Applied Materials Shanghai Research & Development Fund (08520740600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weida Hu or Xiaoshuang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Chen, X., Ye, Z. et al. Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling. J. Electron. Mater. 39, 981–985 (2010). https://doi.org/10.1007/s11664-010-1121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1121-8

Keywords

Navigation