Skip to main content
Log in

Numerical Modeling of SRH and Tunneling Mechanisms in High-Operating-Temperature MWIR HgCdTe Photodetectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A combined experimental and numerical simulation study is presented on two sets of nominally identical \(\hbox {Hg}_{1-x}\hbox {Cd}_{x}\hbox {Te}\) single-color back-illuminated midwave-infrared n-on-p photodetectors grown by liquid-phase epitaxy, p-doped with Hg vacancies and with Au, respectively. The present numerical model includes a novel formulation for band-to-band tunneling, which overcomes the intrinsic limitations of the classical Kane description without introducing numerical issues typical of other approaches. Our study confirms that adopting n-on-p architectures, avoiding metal vacancy doping, and reducing the acceptor density in the absorber region are prerequisites for obtaining high-operating-temperature photodetectors. A significant contribution to the dark current in both sets of devices is attributed to impact ionization, crucial to obtain a satisfactory explanation for the measured characteristics also at low to intermediate bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kinch, J. Electron. Mater. 29, 809 (2000). doi:10.1007/s11664-000-0229-7

    Article  Google Scholar 

  2. M.B. Reine, Proceedings of the SPIE, vol. 4288, 2001 doi:10.1117/12.429413

  3. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003). doi:10.1016/S0079-6727(02)00024-1

    Article  Google Scholar 

  4. A. Rogalski, Infrared Detectors, 2nd edn. ( Boca Raton, FL: CRC Press, 2011)

    Google Scholar 

  5. M.A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, Bellingham, WA, 2014). doi:10.1108/eb010297

    Book  Google Scholar 

  6. T. Ashley and C.T. Elliott, Electron. Lett. 21, 451 (1985). doi:10.1049/el:19850321

    Article  Google Scholar 

  7. M.A. Kinch, F. Aqariden, D. Chandra, P.K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005). doi:10.1007/s11664-005-0036-2

    Article  Google Scholar 

  8. M.A. Kinch, J. Electron. Mater. 39, 1043 (2010). doi:10.1007/s11664-010-1087-6

    Article  Google Scholar 

  9. S. Velicu, C.H. Grein, P.Y. Emelie, A. Itsuno, J.D. Phillips, and P.S. Wijewarnasuriya, J. Electron. Mater. 39, 873 (2010). doi:10.1007/s11664-010-1218-0

    Article  Google Scholar 

  10. H.F. Schaake, M.A. Kinch, D. Chandra, P.K. Liao, D.F. Weirauch, C.F. Wan, and H.D. Shih, Proceedings of the SPIE vol. 7608, 2010. doi:10.1117/12.846254

  11. J. Wenisch, H. Bitterlich, M. Bruder, P. Fries, R. Wollrab, J. Wendler, R. Breiter, J. Ziegler, and J. Electron. Mater. 42, 3186 (2013). doi:10.1007/s11664-013-2757-y

    Article  Google Scholar 

  12. A.S. Verhulst, D. Leonelli, R. Rooyackers, and G. Groeseneken, J. Appl. Phys. 110, 024510 (2011). doi:10.1063/1.3609064

    Article  Google Scholar 

  13. K. Ahmed, M.M.M. Elahi, and M.S. Islam, in 2012 International Conference on Informatics, Electronics and Vision (ICIEV) (2012). doi:10.1109/ICIEV.2012.6317361

  14. J. Ziegler, D. Eich, M. Mahlein, T. Schallenberg, R. Scheibner, J. Wendler, J. Wenisch, R. Wollrab, V. Daumer, R. Rehm, F. Rutz, and M. Walther, in Infrared Technology and Applications XXXVII, vol. 8012, Proceedings of the SPIE, ed. by B.F. Andresen, G.F. Fulop, P.R. Norton (2011), p. 801237. doi:10.1117/12.883888

  15. R. Wollrab, W. Schirmacher, T. Schallenberg, H. Lutz, J. Wendler, and J. Ziegler, in 6th International Symposium on Optronics in Defence and Security (OPTRO 2014) (Paris, 2014)

  16. M. Vallone, M. Goano, F. Bertazzi, G. Ghione, R. Wollrab, and J. Ziegler, J. Electron. Mater. 43, 3070 (2014). doi:10.1007/s11664-014-3252-9

    Article  Google Scholar 

  17. D.G. Seiler, J.R. Lowney, C.L. Litter, and M.R. LoLoee, J. Vac. Sci. Technol. A 8, 1237 (1990). doi:10.1116/1.576952

    Article  Google Scholar 

  18. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron Devices 48, 1326 (2001). doi:10.1109/16.930647

    Article  Google Scholar 

  19. M.H. Weiler, Defects, (HgCd)Se, (HgCd)Te, Semiconductors and Semimetals, 16th edn., ed. R.K. Willardson and A.C. Beer (New York: Academic, 1981), pp. 119–191

    Chapter  Google Scholar 

  20. J.P. Rosbeck, R.E. Starr, S.L. Price, and K.J. Riley, J. Appl. Phys. 53, 6430 (1982). doi:10.1063/1.331516

    Article  Google Scholar 

  21. V.C. Lopes, A.J. Syllaios, and M.C. Chen, Semicond. Sci. Tech. 8, 824 (1993). doi:10.1088/0268-1242/8/6S/005

    Article  Google Scholar 

  22. T. Casselman, J. Appl. Phys. 52, 848 (1981). doi:10.1063/1.328426

    Article  Google Scholar 

  23. F. Bertazzi, M. Goano, and E. Bellotti, J. Electron. Mater. 40, 1663 (2011). doi:10.1007/s11664-011-1638-5

    Article  Google Scholar 

  24. P. Capper and J. Garland Mercury Cadmium Telluride. Growth, Properties and Applications (Chichester, UK: Wiley, 2011)

    Google Scholar 

  25. W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952). doi:10.1103/PhysRev.87.835

    Article  Google Scholar 

  26. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  27. M.A. Kinch, J. Electron. Mater. (2015, online). doi:10.1007/s11664-015-3717-5

  28. S. Krishnamurthy, M.A. Berding, Z.G. Yu, C.H. Swartz, T.H. Myers, D.D. Edwall, and R. DeWames, J. Electron. Mater. 34, 873 (2005). doi:10.1007/s11664-005-0035-3

    Article  Google Scholar 

  29. E.O. Kane, J. Appl. Phys. 32, 83 (1961). doi:10.1063/1.1735965

    Article  Google Scholar 

  30. R. Adar, IEEE Trans. Electron Devices 39, 976 (1992). doi:10.1109/16.127459

    Article  Google Scholar 

  31. K. Jóźwikowski, M. Kopytko, A. Rogalski, and A. Jóźwikowska, J. Appl. Phys. 108, 074519 (2010). doi:10.1063/1.3483926

    Article  Google Scholar 

  32. G.A.M. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, IEEE Trans. Electron Devices 39, 331 (1992). doi:10.1109/16.121690

    Article  Google Scholar 

  33. W. Vandenberghe, B. Sorée, W. Magnus, and M.V. Fischetti, J. Appl. Phys. 109, 124503 (2011). doi:10.1063/1.3595672

    Article  Google Scholar 

  34. Y. Okuto and C.R. Crowell, Phys. Rev. B 6, 3076 (1972). doi:10.1103/PhysRevB.6.3076

    Article  Google Scholar 

  35. M.A. Kinch, J.D. Beck, C.F. Wan, F. Ma, and J. Campbell, J. Electron. Mater. 33, 630 (2004). doi:10.1007/s11664-004-0058-1

    Article  Google Scholar 

  36. C.T. Elliott, N.T. Gordon, R.S. Hall, and G. Crimes, J. Vac. Sci. Technol. A 8, 1251 (1990). doi:10.1116/1.576954

    Article  Google Scholar 

  37. J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, J. Electron. Mater. 40, 1757 (2011). doi:10.1007/s11664-011-1679-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Goano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallone, M., Mandurrino, M., Goano, M. et al. Numerical Modeling of SRH and Tunneling Mechanisms in High-Operating-Temperature MWIR HgCdTe Photodetectors. J. Electron. Mater. 44, 3056–3063 (2015). https://doi.org/10.1007/s11664-015-3767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3767-8

Keywords

Navigation