Skip to main content
Log in

The interfacial bilayer Cu6Sn5 formed in a Sn–Ag–Cu flip-chip solder joint incorporating Au/Pd metallization during solid-state aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solid-state reaction between the Sn–Ag–Cu solder and Ni metallization resulted in the formation of interfacial bilayer Cu6Sn5-based intermetallic compounds (IMCs) in a solder joint incorporating Au/Pd metallization. The layer near the Ni metallization was identified as (Cu,Ni,Au)6Sn5 containing 20.3 at.% of Ni and 1.7 at.% of Au, and the layer near the solder matrix was identified as (Cu,Au,Ni,Pd)6Sn5 containing 5.7 at.% of Au, 1.2 at.% of Ni, and 1.0 at.% of Pd. The electron diffraction analysis with high resolution transmission electron microscopy further characterized the interfacial bilayer IMCs as having the same hexagonal crystal structure with different crystal orientations. The kinetics study revealed that the (Cu,Ni,Au)6Sn5 in the interfacial bilayer reaction products was formed during the initial reflow process, while the (Cu,Au,Ni,Pd)6Sn5 layer was formed during subsequent solid-state aging. Predominant growth of the (Cu,Au,Ni,Pd)6Sn5 layer was observed during solid-state aging. In contrast, the growth of the initially formed (Cu,Ni,Au)6Sn5 layer was suppressed. The growth of the (Cu,Au,Ni,Pd)6Sn5 layer was governed by the dissolution of the (Au,Pd)Sn4 IMC that occurred during solid-state aging. The complete dissolution of (Au,Pd)Sn4 resulted in a reactant-limited chemical reaction from the conversion of (Au,Pd)Sn4 to (Cu,Au,Ni,Pd)6Sn5. The development of the interfacial bilayer IMCs in the solder joint incorporating Au/Pd metallization suppressed excessive IMC growth and unfavorable phase transformation during long-term solid-state aging. The detailed mechanism of the formation of the interfacial bilayer Cu6Sn5-based IMCs was investigated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.N. Tu, Microelectron. Reliab. 51, 517 (2011)

    Article  Google Scholar 

  2. H. Huebner, S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen, M. Schneegans, Microelectron. Eng. 83, 2155 (2006)

    Article  Google Scholar 

  3. C.L. Liang, K.L. Lin, J.W. Peng, J. Electron. Mater. 45, 51 (2016)

    Article  Google Scholar 

  4. C.W. Chen, T.C. Chiu, Y.T. Chiu, C.W. Lee, K.L. Lin, Intermetallics 85, 117 (2017)

    Article  Google Scholar 

  5. Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428 (2010)

    Article  Google Scholar 

  6. K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335 (2003)

    Article  Google Scholar 

  7. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloy. Compd. 719, 365 (2017)

    Article  Google Scholar 

  8. Y. Tang, G.Y. Li, Y.C. Pan, J. Alloy. Compd. 554, 195 (2013)

    Article  Google Scholar 

  9. Y. Tang, G.Y. Li, D.Q. Chen, Y.C. Pan, J. Mater. Sci. Mater. Electron. 25, 981 (2014)

    Article  Google Scholar 

  10. Y. Tang, S.M. Luo, K.Q. Wang, G.Y. Li, J. Alloy. Compd. 684, 299 (2016)

    Article  Google Scholar 

  11. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)

    Article  Google Scholar 

  12. W.T. Chen, C.E. Ho, C.R. Kao, J. Mater. Res. 17, 263 (2002)

    Article  Google Scholar 

  13. C.E. Ho, R.Y. Tsai, Y.L. Lin, C.R. Kao, J. Electron. Mater. 31, 584 (2002)

    Article  Google Scholar 

  14. T.L. Shao, T.S. Chen, Y.M. Huang, C. Chen, J. Mater. Res. 19, 3654 (2004)

    Article  Google Scholar 

  15. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, D.S. Jiang, J. Electron. Mater. 35, 1017 (2006)

    Article  Google Scholar 

  16. J.W. Yoon, B.I. Noh, S.B. Jung, J. Electron. Mater. 40, 1950 (2011)

    Article  Google Scholar 

  17. T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010)

    Article  Google Scholar 

  18. S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu, J.G. Duh, Mater. Lett. 80, 103 (2012)

    Article  Google Scholar 

  19. C.Y. Yu, T.K. Lee, M. Tsai, T.C. Liu, J.G. Duh, J. Electron. Mater. 39, 2544 (2010)

    Article  Google Scholar 

  20. I.T. Wang, J.G. Duh, C.Y. Cheng, J. Wang, Mater. Sci. Eng. B 177, 278 (2012)

    Article  Google Scholar 

  21. C.E. Ho, W.H. Wu, L.H. Hsu, C.S. Lin, J. Electron. Mater. 41, 11 (2012)

    Article  Google Scholar 

  22. C.L. Liang, K.L. Lin, P.J. Cheng, Surf. Coat. Technol. 319, 55 (2017)

    Article  Google Scholar 

  23. C.L. Liang, K.L. Lin, P.J. Cheng, J. Mater. Sci. 52, 11659 (2017)

    Article  Google Scholar 

  24. H.K. Kim, K.N. Tu, P.A. Totta, Appl. Phys. Lett. 68, 2204 (1996)

    Article  Google Scholar 

  25. A.M. Minor, J.W. Morris Jr., Metall. Mater. Trans. A 31A, 798 (2000)

    Article  Google Scholar 

  26. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, C.R. Kao, J. Electron. Mater. 29, 1175 (2000)

    Article  Google Scholar 

  27. J.H. Lee, J.H. Park, D.H. Shin, Y.H. Lee, Y.S. Kim, J. Electron. Mater. 30, 1138 (2001)

    Article  Google Scholar 

  28. T. Laurila, V. Vuorinen, T. Mattila, J.K. Kivilahti, J. Electron. Mater. 34, 103 (2005)

    Article  Google Scholar 

  29. M.O. Alam, Y.C. Chan, Chem. Mater. 17, 927 (2005)

    Article  Google Scholar 

  30. C.E. Ho, L.C. Shiau, C.R. Kao, J. Electron. Mater. 31, 1264 (2002)

    Article  Google Scholar 

  31. K. Nogita, T. Nishimura, Scr. Mater. 59, 191 (2008)

    Article  Google Scholar 

  32. G. Zeng, S.D. McDonald, Q.F. Gu, S. Suenaga, Y. Zhang, J.H. Chen, K. Nogita, Intermetallics 43, 85 (2013)

    Article  Google Scholar 

  33. U. Schwingenschlögl, C.D. Paola, K. Nogita, C.M. Gourlay, Appl. Phys. Lett. 96, 061908 (2010)

    Article  Google Scholar 

  34. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, Scr. Mater. 65, 922 (2011)

    Article  Google Scholar 

  35. Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl, K.W. Paik, J. Electron. Mater. 32, 548 (2003)

    Article  Google Scholar 

  36. Y.D. Jeon, K.W. Paik, A. Ostmann, H. Reichl, J. Electron. Mater. 34, 80 (2005)

    Article  Google Scholar 

  37. L.Y. Hsiao, G.Y. Jang, K.J. Wang, J.G. Duh, J. Electron. Mater. 36, 1476 (2007)

    Article  Google Scholar 

  38. C. Yu, J.Y. Liu, H. Lu, P.L. Li, J.M. Chen, Intermetallics 15, 1471 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Science and Technology of the Republic of China under MOST104-2221-E-006-028-MY3. We also wish to express our deep appreciation to the ASE group, Kaohsiung for supplying the specimens and for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Lung Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, CL., Lin, KL. & Cheng, PJ. The interfacial bilayer Cu6Sn5 formed in a Sn–Ag–Cu flip-chip solder joint incorporating Au/Pd metallization during solid-state aging. J Mater Sci: Mater Electron 29, 15233–15240 (2018). https://doi.org/10.1007/s10854-018-9665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9665-0

Navigation