Skip to main content
Log in

Transparent flexible plastic substrates for organic light-emitting devices

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we describe the properties of flexible plastic substrates with a transparent conducting electrode (TCE), which are important for organic light-emitting devices (OLEDs). Specifically, we have evaluated the TCE electrical resistivity, surface roughness, electrode patterning, optical transmission, and the substrate water vapor/oxygen transmission. We have studied the effect of ultraviolet (UV)-ozone treatment on the TCE surface by using contact angle measurements and x-ray photoelectron spectroscopy (XPS). A decrease in the advancing contact angle by 30–40° and an increase of oxygen content on the TCE surface by 10 at.% were observed after the UV-ozone treatment. These changes facilitate the polymer adhesion to the TCE surface and increase the TCE surface work function, respectively. A sheet resistance of 12–13 Ω/□, an optical transmission greater than 80% over the visible range, and a surface roughness of 1.4–2.2-nm RMS over 50×50 µm2 have been obtained for the plastic substrates. These properties are adequate for OLED applications based on United States Display Consortium specifications. Finally, we have found that a combination of hydrogenated amorphous silicon-nitride and silicon-oxide layers deposited on one side of the substrate at low-temperature reduces the water vapor and oxygen transmission rates (TRs) to less than 10−5 g/cm2-day-atm and about 10−7 cc/cm2-day-atm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Jabbour, S.E. Shaheen, M.M. Morrell, B. Kippelen, N.R. Armstrong, and N. Peyghambarian, Opt. Photonics News 10, 24 (1999).

    Article  CAS  Google Scholar 

  2. J.W. Allen, J. Lumin. 60/61, 912 (1994).

    Article  Google Scholar 

  3. N.D. Young, R.M. Bunn, R.W. Wilks, D.J. McCulloch, S.C. Deane, M.J. Edwards, G. Harkin, and A.D. Pearson, J. SID 5/3, 275 (1997).

    Google Scholar 

  4. M.J. Lee and C.P. Judge, Solid State Electron. 44, 1431 (2000).

    Article  CAS  Google Scholar 

  5. Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (1998).

    Article  Google Scholar 

  6. Y. Hong, Z. He, S. Lee, and J. Kanicki, Proc. Int. Soc. Opt. Eng. 4464, 329 (2002).

    CAS  Google Scholar 

  7. J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Phys. Status Solidi A 184, 233 (2001).

    Article  CAS  Google Scholar 

  8. M.S. Weaver et al., Proc. 44th Annual Tech. Conf.-Soc. Vacuum Coaters (Albuquerque, NM: The Society, 2001), p. 155.

    Google Scholar 

  9. J.K. Mahon, J.J. Brown, T.X. Zhou, P.E. Burrows, and S.R. Forrest, Proc. 42nd Annual Tech. Conf.-Soc. Vacuum Coaters (Albuquerque, NM: The Society, 1999), pp. 456–459.

    Google Scholar 

  10. P.E. Burrows et al., Proc. Int. Soc. Opt. Eng. 4105, 75 (2000).

    Google Scholar 

  11. A. Berntsen, Y. Croonen, C. Liedenbaum, H. Schoo, R.-J., Visser, J. Vleggaar, and P. van de Weijer, Opt. Mater. 9, 125 (1998).

    Article  CAS  Google Scholar 

  12. G. Gu, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, Opt. Lett. 22, 172 (1997).

    CAS  Google Scholar 

  13. J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Phys. Status Solidi A 184, 233 (2001).

    Article  CAS  Google Scholar 

  14. G. Gustafsson, Y. Cao, G.M. Treacy, F. Kavetter, N. Colaneri, and A.J. Heeger, Nature 357, 477 (1992).

    Article  CAS  Google Scholar 

  15. S.H. Kwon, S.Y. Paik, and J.S. Yoo, Synth. Met. 130, 55 (2002).

    Article  CAS  Google Scholar 

  16. LOFO High Tech Film GmbH, TRANSPHAN OG, http://www.lofo.com/english/products/cast-films/transphan/index.html

  17. H.C. Choi, Y.Z. Chu, L.S. Heath, and W.K. Smyth, U.S. patent 6,379,509 (30 April 2002).

  18. P.Y.Z. Chu, H.C. Choi, L.S. Heath, C.S. Ko, J. Mack, P. Nagarka, J. Richard, W. Smyth, and J. Wang, Soc. Info. Display Int. Symp., Dig. Tech. Papers 29, 1099 (1998).

    Article  Google Scholar 

  19. N.S. Lennhoff and J. Ram, U.S. Patent Published Applications, publication number 20020182386.

  20. Y. Aoshima, M. Miyazaki, K. Sato, Y. Kao, S. Takaki, and K. Adachi, Jpn. J. Appl. Phys. 40, 4166 (2001).

    Article  CAS  Google Scholar 

  21. W. Song, S.K. So, and L. Cao, Appl. Phys. A 72, 361 (2001).

    Article  CAS  Google Scholar 

  22. M.G. Mason, L.S. Hung, C.W. Tang, S.T. Lee, K.W. Wong, and M. Wang, J. Appl. Phys. 86, 1688 (1999).

    Article  CAS  Google Scholar 

  23. C.C. Wu, C.I. Wu, J.C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).

    Article  CAS  Google Scholar 

  24. T. Osada, T. Kugler, P. Broms, and W.R. Salaneck, Synth. Met. 96, 77 (1998).

    Article  CAS  Google Scholar 

  25. J.S. Kim, M. Granstrom, R.H. Friend, N. Johansson, W.R. Salaneck, R. Kaik, W.J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998).

    Article  CAS  Google Scholar 

  26. D.K. Owens and R.C Wendt, J. Appl. Polymer Sci. 13, 1741 (1969).

    Article  CAS  Google Scholar 

  27. D.H. Kaelble, J. Adhes. 2, 66 (1970).

    CAS  Google Scholar 

  28. D.H. Kaelble, Physical Chemistry of Adhesion (New York: Wiley, 1971).

    Google Scholar 

  29. Z. Hruska and X. Lepot, J. Fluorine Chem. 105, 87 (2000).

    Article  CAS  Google Scholar 

  30. W.R. Runyan, Semiconductor Measurements and Instrumentation (New York: McGraw-Hill, 1975).

    Google Scholar 

  31. M.A. Logan, J. Bell System Technol. 46, 2277 (1967).

    Google Scholar 

  32. J.-H. Lan and J. Kanicki, J. Electron. Mater. 25, 1806 (1996).

    CAS  Google Scholar 

  33. W. Cunningham et al., J. Phys. D Appl. Phys. 34, 2804 (2001).

    Article  CAS  Google Scholar 

  34. H. Hosono, M. Kurita, and H. Kawazoe, Jpn. J. Appl. Phys. 37, L1119 (1998).

    Google Scholar 

  35. H.-Y. Tsai, H. Yang, C.-T. Pan, and M.-C. Chou, Proc. Int. Soc. Opt. Eng. 4230, 156 (2000).

    CAS  Google Scholar 

  36. ASTM, Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor, D3985-95 (West Conshohocken, PA: ASTM, 1995).

    Google Scholar 

  37. ASTM, Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor, F1249-90 (West Conshohocken, PA: ASTM, 1995).

    Google Scholar 

  38. P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M.K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, and M.B. Sullivan, Displays 22, 65 (2001).

    Article  CAS  Google Scholar 

  39. G. Nisato, P.C.P. Bouten, P.J. Slikkerveer, W.D. Bennett, G.L. Graff, N. Rutherford, and L. Wiese, Proc. Asia Display/IDW ’01 (San Jose, CA: Society for Information Display, 2001), pp. 1435–1438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., He, Z., Lennhoff, N.S. et al. Transparent flexible plastic substrates for organic light-emitting devices. J. Electron. Mater. 33, 312–320 (2004). https://doi.org/10.1007/s11664-004-0137-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0137-3

Key words

Navigation