Skip to main content
Log in

Precipitation and Growth of MnS Inclusions in Non-quenched and Tempered Steel Under the Influence of Solute Micro-segregations During Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Precipitation and growth behaviors of MnS inclusions during the solidification of non-quenched and tempered steel have been experimentally and thermodynamically investigated. Effects of cooling method and cooling rate on the morphologies, size distributions, number densities, and average diameters of MnS inclusions in steels were systematically revealed. Coupled with thermodynamic calculation of MnS precipitation, two solute element micro-segregation models, Clyne–Kurz model and Ohnaka model, were introduced and improved by taking the micro-segregations of silicon, oxygen, and other solute elements into account during the steel solidification. The MnS inclusion growth was estimated according to the model calculation results. A non-linear fitting curve equation for describing the relationship between cooling rate of molten steel v and average inclusion diameter d was acquired by experiments: d = 10.726v−0.438. At the cooling rate of Rc = 1.26 K s−1, the solidification fraction values for MnS precipitation in the two models were 0.929 and 0.931, respectively. Precipitation and growth of the MnS inclusions during solidification were well predicted by the improved Clyne–Kurz and Ohnaka solute element micro-segregation models by comparison of experimental and calculated results. Both the two models were validated and could be judged as equal in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Jiang, W. Fang, R.M. Chen, D.Y. Guo, Y.J. Huang, C.L. Zhang, and Y.Z. Liu: Mat. Sci. Eng. A, 2019, vol. 748, pp. 180–88.

    Article  CAS  Google Scholar 

  2. Y. Yang, C.B. Lai, F.M. Wang, Z.B. Yang, and B. Song: Int. J. Min. Met. Mater., 2007, vol. 14, pp. 501–06.

    CAS  Google Scholar 

  3. K. Wang, T. Yu, Y. Song, H.X. Li, M.D. Liu, R. Luo, J.Y. Zhang, F.S. Fang, and X.D. Lin: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1213–24.

    Article  Google Scholar 

  4. T.F. Majka, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1627–37.

    Article  CAS  Google Scholar 

  5. J. Torkkeli, T. Saukkonen, and H. Hanninen: Corros. Sci., 2015, vol. 96, pp. 14–22.

    Article  CAS  Google Scholar 

  6. P.A. Thornton: J. Mater. Sci., 1971, vol. 6, pp. 347–56.

    Article  CAS  Google Scholar 

  7. J.C. Yan, T. Li, Z.Q. Shang, and H. Guo: Mater. Charact., 2019, p. 109944.

  8. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.

    Article  CAS  Google Scholar 

  9. H. Takada, I. Bessho, and T. Ito: Tetsu to Hagane, 1978, vol. 62, pp. 1319–28.

    Article  Google Scholar 

  10. M.L. Li, F.M. Wang, C.R. Li, Z.B. Yang, Q.Y. Meng, and S.F. Tao: Int. J. Miner. Metall., 2015, vol. 22, pp. 589–97.

    Article  CAS  Google Scholar 

  11. X.H. Gao, X.N. Meng, L. Cui, and M.Y. Zhu: Mater. Res. Express., 2019, vol. 6, 096583.

    Article  CAS  Google Scholar 

  12. X.W. Zhang, C.F. Yang, and L.F. Zhang: Metall. Res. Technol., 2020, vol. 117, pp. 110–21.

    Article  Google Scholar 

  13. R. Diederichs and W. Bleck: Steel Res. Int., 2016, vol. 77, pp. 202–09.

    Article  Google Scholar 

  14. J.B. Xie, D.L. Hu, J.X. Fu, and H. Liu: Ironmak. Steelmak., 2019, vol. 46, pp. 542–49.

    Article  CAS  Google Scholar 

  15. Q.F. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2905–16.

    Article  Google Scholar 

  16. T.W. Clyne and W. Kurz: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  17. I. Ohnaka: ISIJ Int., 1986, vol. 26, pp. 1045–51.

    Article  CAS  Google Scholar 

  18. D. Tang, M. Ferreira, and P. Pistorius: Microsc. Microanal., 2017, vol. 23, pp. 1082–90.

    Article  CAS  Google Scholar 

  19. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 52–65.

    Google Scholar 

  20. J. Chen: Manual of Chart and Data in Common Use of Steel Making, 2nd ed. The Metallurgical Industry Press, Beijing, 2010, p. 510.

    Google Scholar 

  21. Z. Liu, J. Wei, and K. Cai: ISIJ Int., 2007, vol. 42, pp. 958–63.

    Article  Google Scholar 

  22. P. Wang, C.Z. Li, L. Wang, J.H. Zhang, and Z.L. Xue: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2056–71.

    Article  Google Scholar 

  23. S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.

    Article  CAS  Google Scholar 

  24. M. Suzuki, R. Yamahuchi, K. Murakami, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 247–56.

    Article  CAS  Google Scholar 

  25. X.W. Zhang, L.F. Zhang, W. Yang, Y. Wang, and Y.Z. Li: J. Iron Steel Res., 2007, vol. 29, pp. 724–31.

    Google Scholar 

  26. D. Tang and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 51–58.

    Article  Google Scholar 

  27. Z. Ma and D. Janke: ISIJ Int., 1998, vol. 38, pp. 46–52.

    Article  CAS  Google Scholar 

  28. R. Diederichs and W. Bleck: Steel Res. Int., 2006, vol. 77, pp. 202–09.

    Article  CAS  Google Scholar 

  29. H. Goto, K.I. Miyazawa, and H. Honma: ISIJ Int., 2007, vol. 36, pp. 537–42.

    Article  Google Scholar 

  30. X.M. Ding, Z. Liu, Q.L. Li, T.Y. Zhang, and C. Liu: Arab. J. Sci. Eng., 2022, vol. 47, pp. 13857–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current study was supported by the National Natural Science Foundation of China (Grant no. 52074198).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengsong Liu or Hongwei Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, C., Bai, R. et al. Precipitation and Growth of MnS Inclusions in Non-quenched and Tempered Steel Under the Influence of Solute Micro-segregations During Solidification. Metall Mater Trans B 54, 685–697 (2023). https://doi.org/10.1007/s11663-023-02718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02718-3

Navigation