Skip to main content
Log in

Effect of Second Phase on the Pitting Corrosion of ZL101A Aluminum Alloy in Thin Electrolyte Layer Environment Containing Cl

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The pitting corrosion of ZL101A aluminum alloy in the thin electrolyte layer containing Cl was studied through the salt spray test. The pitting corrosion behavior was mainly characterized by scanning electron microscopy, electrochemical measurements and in-situ scanning Kelvin probe force microscopy. The results indicated that the second phases in ZL101A aluminum alloy had significant effects on the pitting corrosion behavior. The Al–Si phase acted as an anode phase induced the initiation of corrosion pits, which leaded to the decrease of polarization resistance (R) and the propagation of corrosion pits along the depth direction. Act as cathodic phase, Mg–Si–Fe phase and Si-rich/Al-poor phase have an 800 mV and 660 mV lower Volta potential than the matrix, respectively. The Volta potential difference between Mg–Si–Fe phase and matrix decreased more significantly than that between Si-rich/Al-poor phase and matrix which remained intact with the duration of corrosion. This verified the higher electrochemical stability of Si-rich/Al-poor phase than Mg–Si–Fe phase, which should be related to the presence of Mg and Fe in Mg–Si–Fe phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be fully shared at this time as the data also forms part of an ongoing study.

References

  1. Wang, L.; Liang, J.; Li, H.; Cheng, L.; Cui, Z.: Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl-. Corros. Sci. 178, 109076 (2021)

    Article  Google Scholar 

  2. Ge, F.; Wang, L.; Dou, Y.; Wei, J.; Cheng, L.; Wang, X.; Cui, Z.: Elucidating the passivation kinetics and surface film chemistry of 254SMO stainless steel for chimney construction in simulated desulfurized flue gas condensates. Constr. Build. Mater. 285, 122905 (2021)

    Article  Google Scholar 

  3. Tian, H.; Fan, L.; Li, Y.; Pang, K.; Chu, F.; Wang, X.; Cui, Z.: Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment. J. Electroanal. Chem. 894, 115368 (2021)

    Article  Google Scholar 

  4. Pu, J.; Zhang, Y.; Zhang, X.; Yuan, X.; Ren, P.; Jin, Z.: Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution. Wear 482–483, 203975 (2021)

    Article  Google Scholar 

  5. Wang, T.; Yang, L.; Tang, Z.; Liu, C.; Ma, Y.; Wu, L.; Yan, H.; Yu, Z.; Liu, W.: Effect of aging treatment on microstructure, mechanical and corrosion properties of 7055 aluminum alloy prepared using powder by-product. Mater. Sci. Eng. A 822, 141606 (2021)

    Article  Google Scholar 

  6. Y. Zhang, Y. Chen, Y. Zhang, G. Bian, C. Wang, A. Wang. Initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments. Chinese J. Aeronaut. (2021)-In press.

  7. Prabhuraj, P.; Rajakumar, S.: Experimental investigation on corrosion behavior of friction stir welded AA7075-T651 aluminium alloy under 3.5% wt NaCl environment. Mater. Today Proc. 45, 5878–5885 (2021)

    Article  Google Scholar 

  8. Kumar, S.R.; Krishnaa, S.D.; Krishna, M.D.; Gokulkumar, N.T.; Akilesh, A.R.: Investigation on corrosion behaviour of aluminium 6061–T6 alloy in acidic, alkaline and salt medium. Mater. Today Proc. 45, 1878–1881 (2021)

    Article  Google Scholar 

  9. Zhao, Q.; Guo, C.; Niu, K.; Zhao, J.; Huang, Y.; Li, X.: Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment. J. Market. Res. 12, 1350–1359 (2021)

    Google Scholar 

  10. Zhou, T.; Neding, B.; Lin, S.; Tseng, J.; Hedström, P.: Cu precipitation-mediated formation of reverted austenite during ageing of a 15–5 PH stainless steel. Scripta Mater. 202, 114007 (2021)

    Article  Google Scholar 

  11. Welborn, S.S.; Simafranca, A.; Wang, Z.; Wei, H.; Detsi, E.: Chelation-mediated synthesis of nanoporous gold at near-neutral pH and room temperature by free corrosion dealloying of gold-copper alloy driven by oxygen reduction. Scripta Mater. 200, 113901 (2021)

    Article  Google Scholar 

  12. Hou, Y.; Xiong, G.; Liu, L.; Li, G.; Moelans, N.; Guo, M.: Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution. Scripta Mater. 177, 151–156 (2020)

    Article  Google Scholar 

  13. Dou, Y.; Han, S.; Wang, L.; Wang, X.; Cui, Z.: Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS. Corros. Sci. 165, 108405 (2020)

    Article  Google Scholar 

  14. Li, M.; Seyeux, A.; Wiame, F.; Marcus, P.; Światowska, J.: Insights on the Al-Cu-Fe-Mn intermetallic particles induced pitting corrosion of Al–Cu–Li alloy. Corros. Sci. 176, 109040 (2020)

    Article  Google Scholar 

  15. Hou, Y.; Wang, J.; Liu, L.; Li, G.; Zhai, D.: Mechanism of pitting corrosion induced by inclusions in Al–Ti–Mg deoxidized high strength pipeline steel. Micron 138, 102898 (2020)

    Article  Google Scholar 

  16. Su, H.; Wei, S.; Liang, Y.; Wang, Y.; Wang, B.; Yuan, Y.: Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations. J. Electroanal. Chem. 863, 114056 (2020)

    Article  Google Scholar 

  17. Cao, C.; Chen, D.; Ren, J.; Shen, J.; Meng, L.; Liu, J.: Improved strength and enhanced pitting corrosion resistance of Al–Mn alloy with Zr addition. Mater. Lett. 255, 126535 (2019)

    Article  Google Scholar 

  18. Kadowaki, M.; Muto, I.; Takahashi, K.; Doi, T.; Masuda, H.; Katayama, H.; Kawano, K.; Sugawara, Y.; Hara, N.: Anodic polarization characteristics and electrochemical properties of Fe3C in chloride solutions. J. Electrochem. Soc. 166, 345–351 (2019)

    Article  Google Scholar 

  19. Zhao, K.; Liu, J.; Yu, M.; Li, S.: Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al–Li alloy thick plate. Trans. Nonferr. Metal. Soc. 29, 1793–1802 (2019)

    Article  Google Scholar 

  20. Revilla, R.I.; Terryn, H.; De Graeve, I.: On the use of SKPFM for in situ studies of the repassivation of the native oxide film on aluminium in air. Electrochem. Commun. 93, 162–165 (2018)

    Article  Google Scholar 

  21. Rahimi, E.; Rafsanjani-Abbasi, A.; Imani, A.; Hosseinpour, S.; Davoodi, A.: Correlation of surface Volta potential with galvanic corrosion initiation sites in solid-state welded Ti–Cu bimetal using AFM-SKPFM. Corros. SCI. 140, 30–39 (2018)

    Article  Google Scholar 

  22. Guillaumin, V.; Mankowski, G.: Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros Sci. 42, 105–125 (2000)

    Article  Google Scholar 

  23. Eckermann, F.; Suter, T.; Uggowitzer, P.J.; Afseth, A.; Schmutz, P.: Investigation of the exfoliation-like attack mechanism in relation to Al–Mg–Si alloy microstructure. Corros Sci. 50, 2085–2093 (2008)

    Article  Google Scholar 

  24. Esfahani, Z.; Rahimi, E.; Sarvghad, M.; Rafsanjani-Abbasi, A.; Davoodi, A.: Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint. J. Alloy Compd. 744, 174–181 (2018)

    Article  Google Scholar 

  25. Kong, D.; Ni, X.; Dong, C.; Lei, X.; Zhang, L.; Man, C.; Yao, J.; Cheng, X.; Li, X.: Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater. Design. 152, 88–101 (2018)

    Article  Google Scholar 

  26. Örnek, C.; Engelberg, D.L.: SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros. Sci. 99, 164–171 (2015)

    Article  Google Scholar 

  27. Rohwerder, M.; Turcu, F.: High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim. Acta. 53, 290–299 (2007)

    Article  Google Scholar 

  28. Na, K.; Pyun, S.: Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis. J Electroanal. Chem. 596, 7–12 (2006)

    Article  Google Scholar 

  29. Cai, C.; Zhang, Z.; Cao, F.; Gao, Z.; Zhang, J.; Cao, C.: Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique. J Electroanal. Chem. 578, 143–150 (2005)

    Article  Google Scholar 

  30. Li, L.; Chen, S.H.; Yang, X.G.; Wang, C.; Guo, W.J.: Pitting corrosion induced current oscillations during electrodissolution of Al in HClO4 solutions. J Electroanal. Chem. 572, 41–49 (2004)

    Article  Google Scholar 

  31. Sarvghad-Moghaddam, M.; Parvizi, R.; Davoodi, A.; Haddad-Sabzevar, M.; Imani, A.: Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corros. Sci. 79, 148–158 (2014)

    Article  Google Scholar 

  32. Amin, M.A.: Uniform and pitting corrosion events induced by SCN anions on Al alloys surfaces and the effect of UV light. Electrochim. Acta. 56, 2518–2531 (2011)

    Article  Google Scholar 

  33. Sathirachinda, N.; Pettersson, R.; Wessman, S.; Pan, J.: Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS. Corros. Sci. 52, 179–186 (2010)

    Article  Google Scholar 

  34. Trueba, M.; Trasatti, S.P.: Study of Al alloy corrosion in neutral NaCl by the pitting scan technique. Mater. Chem. Phys. 121, 523–533 (2010)

    Article  Google Scholar 

  35. Nakhaie, D.; Davoodi, A.; Imani, A.: The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM–EDS, AFM and SKPFM. Corros. Sci. 80, 104–110 (2014)

    Article  Google Scholar 

  36. Sabzi, M.; Dezfuli, S.M.; Balak, Z.: Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni-P nanocomposite coating enhanced by zirconia nanoparticles. Int. J. Miner. Metall. Mater. 26, 1020–1030 (2019)

    Article  Google Scholar 

  37. Dezfuli, S.M.; Sabzi, M.: Deposition of self-healing thin films by the sol–gel method: a review of layer-deposition mechanisms and activation of self-healing mechanisms. Appl. Phys. A. 125, 577 (2019)

    Google Scholar 

  38. Sabzi, M.; Far, S.M.; Dezfuli, S.M.: Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process. Int. J. Miner. Metall. Mater. 25, 1431–1438 (2018)

    Article  Google Scholar 

  39. Mousavi Anijdan, S.H.; Sabzi, M.; Asadian, M.; Jafarian, H.R.: Effect of sub-layer temperature during HFCVD process on morphology and corrosion behavior of tungsten carbide coating. Int. J. Appl. Ceram. Technol. 16, 243–253 (2019)

    Article  Google Scholar 

  40. Wang, P.; Ma, L.; Cheng, X.; Li, X.: Influence of grain refinement on the corrosion behavior of metallic materials: A review. Int. J. Miner. Metall. Mater. 28, 1112–1126 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledgment the National Science and Technology Resources Investigation Program of China (Grant No. 2019FY101400).

Author information

Authors and Affiliations

Authors

Contributions

XD: Visualization, Methodology, Writing—original draft. Zhen Liu: Investigation. QL: Investigation. TZ: Conceptualization, Writing—review & editing. CL: Conceptualization, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Tianyi Zhang or Chao Liu.

Ethics declarations

Competing Interest

The authors declared that no conflict of interest exists for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Liu, Z., Li, Q. et al. Effect of Second Phase on the Pitting Corrosion of ZL101A Aluminum Alloy in Thin Electrolyte Layer Environment Containing Cl. Arab J Sci Eng 47, 13857–13872 (2022). https://doi.org/10.1007/s13369-021-06549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06549-9

Keywords

Navigation