Skip to main content
Log in

Effect of the Bloom-Heating Process on the Inclusion Size of Si-Killed Spring Steel Wire Rod

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For some Si-killed steel grades, it is desirable to obtain calcium or manganese silico-aluminate inclusions with low-melting temperatures, which form a glassy phase at low temperatures and are easily elongated and reduced in size during hot rolling. However, these inclusions sometimes exhibit coarse crystallization changes during heat treatment before hot rolling, which affects the rheological properties of inclusions. In the present work, the composition, morphology, and size of inclusions in Si-killed spring steel by two types of bloom-heating processes were investigated. It was found that most oxide inclusions in the billet were glassy and had good rolling deformability when a 1523 K × 150 minutes bloom-heating process was adopted. However, when a heating process of 1373 K × 40 minutes was adopted, the oxide inclusions had a high proportion of crystallization, and most of them had poor rolling deformability. Due to the influence of different crystallization ratios and crystal sizes of inclusions, the maximum inclusion sizes of the corresponding wire rods were 20 and 35 μm, respectively. On the basis of these results, it was suggested that to improve the inclusion control of Si-killed spring steel, the heating temperature and time before blooming should be selected in the high-temperature region above the nose temperature of the inclusion TTT transformation curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(adapted from Ref. [22])

Fig. 11

Similar content being viewed by others

References

  1. Y. Prawoto, M. Ikeda, S.K. Manville, and A. Nishikawa: Eng. Fail. Anal., 2008, vol. 15, pp. 1155–74.

    Article  CAS  Google Scholar 

  2. T. Jinbo, T. Fujiwara, S. Suda, and N. Ibaraki: KOBELCO Technol. Rev., 2007, vol. 27, pp. 23–27.

    CAS  Google Scholar 

  3. Y.Q. Meng, Y.R. Zheng, and H.Q. Zhao: J. Iron Steel Res., 2015, vol. 27, pp. 1–6. (in Chinese).

    CAS  Google Scholar 

  4. S. Suda and N. Ibaraki: KOBELCO Technol. Rev., 2005, vol. 26, pp. 21–25.

    CAS  Google Scholar 

  5. Y. Murakami: JSME Int. J., 1989, vol. 32, pp. 167–80.

    CAS  Google Scholar 

  6. Y. Furuya, S. Matsuoka, and T. Abe: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3737–44.

    Article  Google Scholar 

  7. R.Z. Wang and J.L. Ru: China Surf. Eng., 2016, vol. 29, pp. 1–9. (in Chinese).

    CAS  Google Scholar 

  8. C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin, and H. Schifferl: Ironmak. Steelmak., 2003, vol. 30, pp. 165–69.

    Article  CAS  Google Scholar 

  9. Y. Hu, W.Q. Chen, C.J. Wan, F.J. Wang, and H.B. Han: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 569–80.

    Article  Google Scholar 

  10. A. Gilles, F. Michel, L. Fabrice, and S. Jean: Wire J. Int., 1998, vol. 31, pp. 84–89.

    Google Scholar 

  11. H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1435–44.

    Article  Google Scholar 

  12. E.V.O. Lima, G.H. Sousa, J.G. Costa Neto, J.J. Mol Peixoto, and C.A. Silva: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2187–98.

    Article  Google Scholar 

  13. C. Zhao, S.M. Jung, Y. Kashiwaya, H. Gaye, and H.G. Lee: ISIJ Int., 2008, vol. 48, pp. 747–54.

    Article  CAS  Google Scholar 

  14. P. Rocabois, J.N. Pontoire, H. Gayes, J. Lehmann, and C. Gatellier: Revue De Metallurgie-CIT, 1997, vol. 94, pp. 1393–1400.

    Article  CAS  Google Scholar 

  15. T. Shiraiwa, N. Fujino, and F. Matsuno Toshio: Sumitomo Met., 1974, vol. 11, pp. 85–100.

    Google Scholar 

  16. G.M. Faulring and S. Ramalingam: Metall. Trans. A, 1979, vol. 10, pp. 1781–88.

    Article  Google Scholar 

  17. K.P. Wang, Y. Wang, J.M. Liao, J.F. Xu, M. Jiang, and X.H. Wang: Iron Steel, 2022, vol. 57, pp. 101–08. (in Chinese).

    CAS  Google Scholar 

  18. K. Yamada, Y. Hashimoto, T. Fujita, Y. Aoki, and H. Tada: Tetsu-to-Hagane, 1981, vol. 67, pp. 1338–44.

    Article  CAS  Google Scholar 

  19. M. Jiang, J.C. Liu, K.L. Li, R.G. Wang, and X.H. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1950–54.

    Article  Google Scholar 

  20. K.P. Wang, M. Jiang, X.H. Wang, Y. Wang, H.Q. Zhao, and Z.M. Cao: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2961–69.

    Article  Google Scholar 

  21. H. Arai, K. Matsumoto, S. Shimasaki, and S. Taniguchi: ISIJ Int., 2009, vol. 49, pp. 965–74.

    Article  CAS  Google Scholar 

  22. P. Rocabois, J.N. Pontoire, J. Lehmann, and H. Gaye: J. Non-Cryst. Solids, 2001, vol. 282, pp. 98–109.

    Article  CAS  Google Scholar 

  23. P. Riboud, C. Gatellier, H. Gaye, J.N. Pontoire, and P. Rocabois: ISIJ Int., 1996, vol. 36, pp. S22–25.

    Article  Google Scholar 

  24. Z.T. Li, N. Liu, W. Yang, and L.F. Zhang: J. Non-Cryst. Solids, 2022, vol. 579, p. 121367.

    Article  CAS  Google Scholar 

  25. Y.Q. Meng, W. Wang, J.Y. Li, H.Q. Zhao, Z.F. Lu, and S.C. Qin: Steelmaking, 2021, vol. 37, pp. 58–61. (in Chinese).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51974210), the Hubei Provincial Natural Science Foundation (No. 2019CFB697), and the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianli Li or Hangyu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Li, J., Wang, K. et al. Effect of the Bloom-Heating Process on the Inclusion Size of Si-Killed Spring Steel Wire Rod. Metall Mater Trans B 53, 2647–2656 (2022). https://doi.org/10.1007/s11663-022-02557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02557-8

Navigation