Skip to main content
Log in

Oxygen Transfer Mechanism of ESR-Slag at Different Atmospheric Oxygen Contents

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxygen transfer mechanism in gas–slag–metal systems is important for controlling the oxygen content of liquid alloy, which is a concern in the production of advanced clean alloy. Here, we report a new method of in situ measurement of the oxygen content of slag and alloy at different atmospheric oxygen contents. This technique is based on the electrochemical method and aims to clarify the behavior of oxygen transport in metallurgical processes. The concentration gradients of Fe3+ at 1773 K were investigated in CaF2-CaO-Al2O3-Fe2O3 slag, and the oxygen contents of molten slag and liquid alloy were determined using the Nernst equation at 1823 K and various oxygen contents. A kinetic model of the mass transfer among the gas–slag interface, slag, and slag–metal interface was established on the basis of permeation theory. The results indicated a small difference between the final oxygen contents of slag and liquid alloy at different atmospheric oxygen contents. Therefore, the atmospheric oxygen content does not significantly affect the equilibrium oxygen content of the alloy when the metallurgical process is not fully protected by Ar gas. Fe3+ is mainly enriched at the gas–slag interface while Fe2+ is enriched at the slag–metal interface, which is mainly due to a stepwise reduction in Fe3+. The interfacial oxygen transfer rate, final oxygen content, and oxygen diffusion coefficient increase with increasing the atmospheric oxygen content. When the atmospheric oxygen content rises from 1 to 21 vol pct, the diffusion coefficient at the gas–slag interface increases from 1.09 × 10−8 to 1.76 × 10−8 cm2/s, and the diffusion coefficient at the slag–metal interface increases from 9.36 × 10−9 to 1.04 × 10−8 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40, pp. 271–80.

    Article  Google Scholar 

  2. Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1315–24.

    Article  CAS  Google Scholar 

  3. Q. Wang, R. Wang, Z. He, G. Li, B. Li, and H. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333–44.

    Article  Google Scholar 

  4. Z.H. Jiang, Y.W. Dong, X. Geng, and F.B. Liu: Electroslag metallurgy, Science Press, Beijing, 2015.

    Google Scholar 

  5. C. Shi: ISIJ Int., 2020, vol. 60, pp. 1083–96.

    Article  CAS  Google Scholar 

  6. S.-C. Duan, X. Shi, F. Wang, M.-C. Zhang, Y. Sun, H.-J. Guo, and J. Guo: Metall. Mater. Trans. B., 2019, vol. 50, pp. 3055–71.

    Article  CAS  Google Scholar 

  7. L.Z. Chang, X.F. Shi, and J.Q. Cong: Ironmak. Steelmak., 2014, vol. 41, pp. 182–86.

    Article  CAS  Google Scholar 

  8. C.X. Chen, Y. Wang, J. Fu, and E.P. Chen: Acta Metall. Sin., 1981, vol. 17, pp. 50–57.

    CAS  Google Scholar 

  9. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  10. A. Mitchell, F. Reyes-carmona, and E. Samuelsson: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 547–56.

    Article  CAS  Google Scholar 

  11. M. Sasabe and K.S. Goto: Metall. Trans., 1974, vol. 5, pp. 2225–33.

    Article  CAS  Google Scholar 

  12. A.J. Deng, D.D. Fan, H.C. Wang, and C.H. Li: J. Iron Steel Res. Int., 2020, vol. 27, pp. 409–19.

    Article  CAS  Google Scholar 

  13. W.F. Caley, B.R. Marple, and C.R. Masson: Can. Metall. Q., 1981, vol. 20, pp. 215–23.

    Article  CAS  Google Scholar 

  14. X. Huang, B. Li, and Z. Liu: Metall. Mater. Trans. B., 2018, vol. 49, pp. 709–22.

    Article  CAS  Google Scholar 

  15. X. Huang, B. Li, and Z. Liu: Int. J. Heat Mass Transf., 2018, vol. 120, pp. 458–70.

    Article  CAS  Google Scholar 

  16. Q. Wang, G. Li, Y. Gao, Z. He, and B. Li: J. Appl. Electrochem., 2017, vol. 47, pp. 445–56.

    Article  CAS  Google Scholar 

  17. S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, C.W. Li, and X.Y. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148–56.

    Article  CAS  Google Scholar 

  18. Q. Wang, F. Wang, G. Li, Y. Gao, and B. Li: Int. J. Heat Mass Transfer., 2017, vol. 113, pp. 1021–30.

    Article  CAS  Google Scholar 

  19. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, and J. Bohacek: Metall. Mater. Trans. B, 2020, vol. 51, pp. 871–79.

    Article  CAS  Google Scholar 

  20. H. Keller, K. Schwerdtfeger, H. Petri, R. Hlzle, and K. Hennesen: Metall. Trans. B., 1982, vol. 13, pp. 237–40.

    Article  Google Scholar 

  21. Y. Shiraishi, H. Nagahama, and H. Ohta: Can. Metall. Q., 1983, vol. 22, pp. 37–43.

    Article  CAS  Google Scholar 

  22. J. Wei and Z. Liu: Acta Metall. Sin., 1994, vol. 30, pp. 350–60.

    Google Scholar 

  23. J.H. Wei and A. Mitchell: Acta Metall. Sin., 1984, vol. 20, pp. 387–405.

    Google Scholar 

  24. J.H. Wei and A. Mitchell: Acta Metall. Sin., 1984, vol. 20, pp. 406–13.

    Google Scholar 

  25. S.S. Li, W.M. Li, D.J. Li, Y.L. Sun, J.W. Dong, X.T. Yin and X.M. Zang: J. Iron Steel Res. Int., 2021, online https://doi.org/10.1007/s42243-021-00608-z

  26. W. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 63–70.

    Article  CAS  Google Scholar 

  27. D.J. Shin and D.J. Min: ISIJ Int., 2013, vol. 53, pp. 434–40.

    Article  CAS  Google Scholar 

  28. K.M. Gg, A. Hasham, and U.B. Pal: ISIJ Int., 1994, vol. 34, pp. 408–13.

    Article  Google Scholar 

  29. G.K. Murthy, A. Hasham, and U. Pal: Ironmak. Steelmak., 1993, vol. 20, pp. 191–200.

    CAS  Google Scholar 

  30. G.K. Murthy, Y. Sawada, and J. Elliott: Ironmak. Steelmak., 1993, vol. 20, pp. 179–90.

    CAS  Google Scholar 

  31. M. Barati and K.S. Coley: Metall. Mater. Trans. B., 2006, vol. 37, pp. 41–49.

    Article  Google Scholar 

  32. S. Hara, H. Hashimoto, and K. Ogino: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 1053–58.

    Article  Google Scholar 

  33. J.-H. Liu, G.-H. Zhang, Y.-D. Wu, and K.-C. Chou: Metall. Mater. Trans. B., 2016, vol. 47, pp. 798–803.

    Article  CAS  Google Scholar 

  34. T. Liu, X. Wang, X. Zhang, X. Gao, L. Li, J. Yu, and X. Yin: Sens. Actuat. B., 2018, vol. 277, pp. 216–23.

    Article  CAS  Google Scholar 

  35. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 61–67.

    Article  CAS  Google Scholar 

  36. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo: Sci. Rep., 2018, vol. 8, p. 5232.

    Article  Google Scholar 

  37. D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao: ISIJ Int., 2017, vol. 57, pp. 1410–19.

    Article  CAS  Google Scholar 

  38. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  39. T. Zhang and Z. Dou: Research Methods for Macrokinetics, 1st ed. Chemical Industry Press, Beijing, 2014.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to National Natural Science Foundation of China (Nos. 51974153 and U1960203), the Joint Fund of State Key Laboratory of Marine Engineering and University of Science and Technology Liaoning (SKLMEA-USTLN-201901, SKLMEA-USTL-201707), and the 2020 Graduate Science and Technology Innovation Program of University of Science and Technology Liaoning.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, W., Sun, Y. et al. Oxygen Transfer Mechanism of ESR-Slag at Different Atmospheric Oxygen Contents. Metall Mater Trans B 53, 1112–1121 (2022). https://doi.org/10.1007/s11663-022-02431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02431-7

Navigation