Skip to main content
Log in

Effects of Refining Slag on Transformation and Removal of Inclusions in Type 430 Stainless Steel

  • Original Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Laboratory “steel–slag” equilibrium experiments at 1873 K (1600 °C) were conducted to study the effects of basicity (CaO/SiO2) and the C/A ratio (CaO/Al2O3) in CaO–SiO2–Al2O3–MgO slag on the inclusions in Si–Mn-deoxidized 430 stainless steels. A thermodynamic analysis was performed to predict the transformation of the chemical composition of the inclusions. A mathematical model was introduced to describe the inclusion behavior at the liquid “steel–slag” interface and predict the removal of oxide inclusions during slag refining. The results showed that increasing slag basicity (R) from 1.0 to 5.0 lowered the total oxygen content (T.O.) from 0.0070 to 0.0038 mass pct and dissolved [O] content in steel from 0.0013 to 0.0008 mass pct, and led to the formation of inclusions with high Al2O3 content, while increasing the C/A ratio from 0.7 to 2.5 had little effect on the steel cleanliness. The values of both \({\text{log}}{{X}}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{i}}\) and \({\text{log}}\frac{{X}_{{\text{Cr}}_{2}{{\text{O}}}_{3}}^{\text{i}}\cdot{X}_{{\text{Si}}{\text{O}}_{2}}^{\text{i}}}{{X}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{i}}\cdot{X}_{\text{MnO}}^{\text{i}}}\) were positively correlated with that of log \(\frac{{a}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{s}}\cdot{a}_{\text{MnO}}^{\text{s}}}{{a}_{{\text{Si}}{\text{O}}_{2}}^{\text{s}}\cdot{{a}}_{{\text{Cr}}_{2}{{\text{O}}}_{3}}^{\text{s}}}\), indicating that the activity ratio of the slag components directly affected the concentration of the inclusions. The separation was less than 90 pct for all inclusions with a diameter of 5 μm for different refining slags. The experimental results and prediction of the mathematical model for inclusion removal after slag refining were in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.F. Zhang and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 733–61.

    Article  CAS  Google Scholar 

  2. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  3. L.F. Zhang: Non-metallic Inclusions in Steel: Fundamentals, Metallurgical Industry Press, Beijing, 2019.

    Google Scholar 

  4. K. Kirihara: Kobelco Technol. Rev., 2011, vol. 30, pp. 62–65.

    CAS  Google Scholar 

  5. S.H. Chen, M. Jiang, X.F. He, and X.H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490–98.

    Article  CAS  Google Scholar 

  6. H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: ISIJ Int., 2016, vol. 56, pp. 108–15.

    Article  CAS  Google Scholar 

  7. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 791–97.

    Article  CAS  Google Scholar 

  8. C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2837–41.

    Article  Google Scholar 

  9. H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1435–44.

    Article  Google Scholar 

  10. H. Zhang, C.S. Liu, Q. Lin, B. Wang, X.Q. Liu, and Q. Fang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 459–70.

    Article  Google Scholar 

  11. C.S. Liu, D. Kumar, B.A. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 529–42.

    Article  Google Scholar 

  12. Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, and W.D. Mao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1024–34.

    Article  Google Scholar 

  13. E.L. Bjørnstad and G. Tranell: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1392–412.

    Article  Google Scholar 

  14. H. Todoroki and K. Mizuno: ISIJ Int., 2004, vol. 44, pp. 1350–57.

    Article  CAS  Google Scholar 

  15. J.S. Park and J.H. Park: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 953–60.

    Article  Google Scholar 

  16. Y. Ren and L.F. Zhang: ISIJ Int., 2017, vol. 57, pp. 68–75.

    Article  CAS  Google Scholar 

  17. W. Liu, J. Liu, H.X. Zhao, S.F. Yang, and J.S. Li: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2430–40.

    Article  Google Scholar 

  18. J.H. Park and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2453–82.

    Article  Google Scholar 

  19. K. Nakajima and K. Okamura: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, 1992, pp. 505–510.

  20. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.

    Article  CAS  Google Scholar 

  21. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–606.

    Article  CAS  Google Scholar 

  22. J. Wikstrom, K. Nakajima, L. Jonsson, and P. Jönsson: Steel Res. Int., 2008, vol. 79, pp. 826–34.

    Article  Google Scholar 

  23. C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1882–92.

    Article  Google Scholar 

  24. S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 2453–63.

    Article  Google Scholar 

  25. K.H. Kim, S.J. Kim, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2144–53.

    Article  CAS  Google Scholar 

  26. H.Y. Tang, Y. Wang, G.H. Wu, P. Lan, and J.Q. Zhang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 879–87.

    Article  Google Scholar 

  27. K. Geels, D.B. Fowler, W. Kopp, and M. Rückert: Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, ASTM International, West Conshohocken, PA, 2007.

  28. E.E. Underwood: Quantitative Stereology for Microstructural Analysis, Springer, Boston, MA, 1973.

    Book  Google Scholar 

  29. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.

    Article  CAS  Google Scholar 

  30. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010.

    Google Scholar 

  31. T. Itoh, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1051–58.

    Article  CAS  Google Scholar 

  32. H. Ohta and H. Suito: ISIJ Int., 2003, vol. 43, pp. 1301–08.

    Article  CAS  Google Scholar 

  33. K. Suzuki, S. Ban-ya, and M. Hino: ISIJ Int., 2001, vol. 41, pp. 813–17.

    Article  CAS  Google Scholar 

  34. K. Mizuno, H. Todoroki, M. Noda, and T. Tohge: Iron Steelmak., 2001, vol. 28, pp. 93–101.

    CAS  Google Scholar 

  35. J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, and P.K. Yang: ISIJ Int., 1996, vol. 36, pp. S140–43.

    Article  Google Scholar 

  36. M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington D.C., 1964.

  37. K.C. Mills: Slags Model (ed 1.07), National Physical Laboratory, UK, 1991.

  38. K. Nakajima: Tetsu-to-Hagane., 1994, vol. 80, pp. 599–604.

    Article  CAS  Google Scholar 

  39. K. Nakajima: Tetsu-to-Hagane., 1994, vol. 80, pp. 383–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The current study was supported by the National Natural Science Foundation of China (Grant Nos. 51774217, 52074198 and 51604201).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengsong Liu or Hongwei Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 11, 2021; accepted December 16, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Peng, Y., Zhang, S. et al. Effects of Refining Slag on Transformation and Removal of Inclusions in Type 430 Stainless Steel. Metall Mater Trans B 53, 702–715 (2022). https://doi.org/10.1007/s11663-021-02420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02420-2

Navigation