Skip to main content
Log in

Analysis of the Wettability Effect on Slag Holdup in a Fixed Bed of Carbonaceous Particles Using CFD–DEM Simulations

  • Topical Collection: Science and Technology of Molten Slags, Fluxes, and Salts
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slag holdups in a fixed bed of carbonaceous particles were investigated using three-dimensional (3D) computational fluid dynamics (CFD) and discrete element method (DEM) simulations. In particular, the effect of improved wettability on the slag holdup, as a result of the formation of a SiC coating on the carbonaceous particle surface, was investigated. Wettability with four different contact angles (i.e., 10, 20, 60, and 118 deg) and coke particles with three various diameters (8 mm, 10 mm, and 12 mm) were considered. It was found out that the total slag holdup was increased with increasing contact angles. At each contact angle, the total holdup decreased with an increase in particle size. The static holdups of particles having contact angles of 60 and 180 deg could be sufficiently predicted using the empirical equation suggested by Jang et al. On the contrary, the static holdups of particles having contact angles of 10 and 20 deg could be sufficiently predicted with the empirical equation proposed by Kawabata et al. and Fukutake and Rajakumar or Chew et al., respectively. The dynamic holdup was in reasonable agreement with the empirical equation suggested by Otake and Okada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1 T. Miwa and K. Kurihara: Steel Res. Int., 2011, vol. 82, pp. 466–72.

    Article  CAS  Google Scholar 

  2. 2 L. Xing, Y. Qu, C. Wang, L. Shao, and Z. Zou: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1233–42.

    Article  CAS  Google Scholar 

  3. 3 S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, and J.O. Wikstrom: ISIJ Int., 2013, vol. 53, pp. 2065–71.

    Article  CAS  Google Scholar 

  4. 4 K.C. Sabat, P. Rajput, R.K. Paramguru, B. Bhoi, and B.K. Mishra: Plasma Chem. Plasma Process., 2014, vol. 34, pp. 1–23.

    Article  CAS  Google Scholar 

  5. 5 I.O. Lee, M.K. Shin, M. Cho, H.G. Kim, and H.G. Lee: ISIJ Int., 2002, vol. 42, pp. 33–7.

    Article  Google Scholar 

  6. 6 V. Vogl, M. Åhman, and L.J. Nilsson: J. Clean. Prod., 2018, vol. 203, pp. 736–45.

    Article  CAS  Google Scholar 

  7. 7 K.C. Sabat and A.B. Murphy: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1561–94.

    Article  CAS  Google Scholar 

  8. 8 M. Pei, M. Petäjäniemi, A. Regnell, and O. Wijk: Metals., 2020, vol. 10, pp. 1–11.

    Google Scholar 

  9. 9 S.H. Yi, W.J. Lee, Y.-S. Lee, and W.-H. Kim: Korean J. Met. Mater., 2021, vol. 59, pp.41-53

    Article  CAS  Google Scholar 

  10. 10 H. Ono-Nakazato, C. Sugahara, and T. Usui: ISIJ Int., 2002, vol. 42, pp. 558–60.

    Article  CAS  Google Scholar 

  11. 11 D. Jang, Y. Kim, M. Shin, and J. Lee: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1308–14.

    Article  CAS  Google Scholar 

  12. 12 M. Shin, J.S. Oh, and J. Lee: ISIJ Int., 2015, vol. 55, pp. 2056–63.

    Article  CAS  Google Scholar 

  13. 13 J.S. Oh, J. Lee, and J. Lee: Korean J. Met. Mater., 2017, vol. 55, pp. 566–71.

    CAS  Google Scholar 

  14. 14 Z. Zhou, H. Zhu, A. Yu, B. Wright, D. Pinson, and P. Zulli: ISIJ Int., 2005, vol. 45, pp. 1828–37.

    Article  CAS  Google Scholar 

  15. 15 H. Kawabata, Z. Liu, F. Fujita, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1466–73.

    Article  CAS  Google Scholar 

  16. 16 T. Fukutake and V. Rajakumar: Trans. ISIJ, 1982, vol. 22, pp. 355–64.

    Article  Google Scholar 

  17. 17 H. Kawabata, K. Shinmyou, T. Harada, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1474–81.

    Article  CAS  Google Scholar 

  18. 18 D.D. Geleta, M.I.H. Siddiqui, and J. Lee: Metall. Mater. Trans. B, 2020, vol. 51, pp. 102–13.

    Article  CAS  Google Scholar 

  19. 19 S.J. Chew, P. Zulli, and A. Yu: ISIJ Int., 2001, vol. 41, pp. 1112–21.

    Article  CAS  Google Scholar 

  20. 20 T. Sugiyama, T. Nakagawa, H. Sibaike, and Y. Oda: Tetsu-to-Hagane, 1987, vol. 73, pp. 2044–51.

    Article  CAS  Google Scholar 

  21. 21 H.L. George, R.J. Longbottom, S.J. Chew, D.J. Pinson, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 1790–6.

    Article  CAS  Google Scholar 

  22. 22 H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 820–6.

    Article  CAS  Google Scholar 

  23. 23 H. Ohgusu, Y. Sassa, Y. Tomita, K. Tanaka, and M. Hasegawa: Tetsu-to-Hagane, 1992, vol. 78, pp. 1164–70.

    Article  CAS  Google Scholar 

  24. 24 K. Saito, K. Ohno, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 1783–90.

    Article  CAS  Google Scholar 

  25. 25 D. Jang, M. Shin, J.S. Oh, H.-S. Kim, S.H. Yi, and J. Lee: ISIJ Int., 2014, vol. 54, pp. 1251–5.

    Article  CAS  Google Scholar 

  26. 26 H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew, and P.R. Austin: ISIJ Int., 2013, vol. 53, pp. 1172–1179.

    Article  CAS  Google Scholar 

  27. 27 W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36, pp. 765–76.

    Article  CAS  Google Scholar 

  28. 28 T. Otake and K. Okada: Chem. Eng., 1953, vol. 17, pp. 176–84.

    Article  CAS  Google Scholar 

  29. 29 Y. Bando, S. Hayashi, A. Matsubara, and M. Nakamura: ISIJ Int., 2005, vol. 45, pp. 1461–5.

    Article  CAS  Google Scholar 

  30. 30 J.S. Oh and J. Lee: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1808–13.

    Article  CAS  Google Scholar 

  31. 31 J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.

    Article  CAS  Google Scholar 

  32. J.S. Oh: PhD. Dissertation, Korea University, Seou, South Korea, 2019.

  33. 33 D.D. Geleta and J. Lee: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3594–602.

    Article  CAS  Google Scholar 

  34. 34 S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 41–50.

    Article  CAS  Google Scholar 

  35. 35 A.T. Adema, Y.X. Yang, and R. Boom: ISIJ Int., 2010, vol. 50, pp. 954–61.

    Article  CAS  Google Scholar 

  36. 36 S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–8.

    Article  CAS  Google Scholar 

  37. 37 Y. Yu, A. Westerlund, T. Paananen, and H. Saxén: ISIJ Int., 2011, vol. 51, pp. 1050–6.

    Article  CAS  Google Scholar 

  38. 38 Y. Yu and H. Saxen: ISIJ Int., 2012, vol. 52, pp. 788–96.

    Article  CAS  Google Scholar 

  39. 39 S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: Chem. Eng. Sci., 2012, vol. 71, pp. 274–82.

    Article  CAS  Google Scholar 

  40. 40 Y. Guo, C.Y. Wu, K.D. Kafui, and C. Thornton: Powder Technol., 2011, vol. 206, pp. 177–88.

    Article  CAS  Google Scholar 

  41. 41 H. Kurosawa, S. Matsuhashi, S. Natsui, T. Kon, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1010–7.

    Article  CAS  Google Scholar 

  42. 42 S. Ueda, T. Kon, H. Kurosawa, S. Natsui, T. Ariyama, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1232–6.

    Article  CAS  Google Scholar 

  43. 43 I.-H. Jeong, H.-S. Kim, and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 2090–8.

    Article  CAS  Google Scholar 

  44. ANSYS Inc.: Ansys Fluent Theory Guide, vol. Fluent18.2, 2017.

  45. 45 R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, 1st ed., John Wiley & Sons, Inc, USA, 1960.

    Google Scholar 

  46. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science Publishers, London, 1987.

    Google Scholar 

  47. 47 Y. Niwa, T. Sumigama, A. Maki, S. Nagano, A. Sakai, and M. Sakurai: Tetsu-to-Hagane, 1990, vol. 76, pp. 337–44.

    Article  CAS  Google Scholar 

  48. 48 M. Li, Y. Bando, T. Tsuge, K. Yasuda, and M. Nakamura: Chem. Eng. Sci., 2001, vol. 56, pp. 5969–76.

    Article  CAS  Google Scholar 

  49. 49 M. Shin, S. Min, J. Lee, J.G. Park, and D.J. Min: Met. Mater. Int., 2012, vol. 18, pp. 1041–7.

    Article  CAS  Google Scholar 

  50. 50 M. Nakamoto, T. Tanaka, J. Lee, and T. Usui: ISIJ Int., 2004, vol. 44, pp. 2115–9.

    Article  CAS  Google Scholar 

  51. 51 J. Lee, A. Tazuke, T. Tanaka, and J.H. Park: Met. Mater. Int., 2009, vol. 15, pp. 501–5.

    Article  CAS  Google Scholar 

  52. 52 M. Shin, J.S. Oh, J. Lee, S. Jung, and J. Lee: Met. Mater. Int., 2014, vol. 20, pp. 1139–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (20172010106300, Development of hybrid ironmaking processes for lower CO2 emissions), funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 31, 2021; accepted June 3, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleta, D.D., Lee, J. Analysis of the Wettability Effect on Slag Holdup in a Fixed Bed of Carbonaceous Particles Using CFD–DEM Simulations. Metall Mater Trans B 52, 2883–2891 (2021). https://doi.org/10.1007/s11663-021-02249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02249-9

Navigation