Skip to main content
Log in

Effect of Nozzle Geometry on Centerline Gas Holdup in Submerged Gas Injection

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Non-circular nozzle geometries are widely used in many industrial processes with submerged gas injection for altering the centerline gas holdup to intensify the reaction process. However, the effect of the nozzle geometry on the centerline gas holdup is rarely investigated. In this work, hollow circular-shaped, gear-shaped, four-flower-shaped and multi-hole-shaped nozzle geometries are utilized to investigate the centerline gas holdup by wire-mesh sensors and digital image processing. The results reveal that the centerline gas holdup is influenced by nozzle geometry, axial distance and gas flow rate. The centerline gas holdup for hollow circular-shaped, four-flower-shaped and multi-hole-shaped nozzles is larger than that of the gear-shaped nozzle. The correlations for the centerline gas holdup are obtained based on modified Froude number Frm and dimensionless axial distance z·\(d_{o}^{ - 1}\) via regression analysis. The correlations for hollow circular-shaped nozzle geometry obtained in this study are validated with experimental data from this study and the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Exponent in Eq. 4 (dimensionless)

B :

Exponent in Eq. 4 (dimensionless)

d o :

Nozzle diameter (m)

Fr m :

Modified Froude number (dimensionless)

g :

Gravitational acceleration (m s2)

h :

Bath depth (m)

k :

Index of openings (dimensionless)

K :

Parameter in Eq. 4 (dimensionless)

L o :

Opening perimeter (m)

m :

Gas mass flow rate (kg s1)

n :

Total number of openings (dimensionless)

N D :

Dimensionless dispersion number (dimensionless)

P :

Pressure (Pa)

Q :

Volumetric gas flow rate (kg m3)

R 2 :

Coefficient of determination (dimensionless)

R s :

Specific gas constant for dry air (J·kg1·K1)

S :

Opening area (m2)

t :

Time (s)

t g :

Time for gas in contact with probe tip (s)

t a :

Total measuring time (s)

T :

Temperature (K)

z :

Axial distance from the nozzle outlet (m)

α :

Gas holdup ( pct)

ρ :

Density (kg m3)

σ:

Standard deviation dimensionless

Δ:

Difference

cl:

Centerline

g:

Gas phase

i:

Inlet

l:

Liquid phase

m:

Model

o:

Outlet

p:

Prototype

References

  1. A. Quiyoom, R. Golani, V. Singh, and V.V. Buwa: Chem. Eng. Sci., 2017, vol. 170, pp. 777–89.

    Article  CAS  Google Scholar 

  2. J. Xiao, H. Yan, L. Liu, F. Möller, Z. Hu, and S. Unger: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 3002–11.

    Article  Google Scholar 

  3. K. Fujiwara, Y. Nakamura, W. Kikuchi, A. Kaneko, and Y. Abe: Exp. Fluids., 2020, vol. 61, pp. 1–13.

    Article  Google Scholar 

  4. J.P. Kapusta, F. Larouche, E. Palumbo: In Proceedings of the Torstein Utigard Memorial Symposium, ed. M. Muinonen, T. Marin, and N. Stubina (Montreal, QC: The Materials and Metallurgical Society of CIM (METSOC), 2015), 2015, pp 1–25.

  5. K. Harby, S. Chiva, and J.L. Muñoz-Cobo: Exp. Therm. Fluid Sci., 2014, vol. 53, pp. 26–39.

    Article  Google Scholar 

  6. P. Anagbo, J. Brimacombe, and A. Castillejos: Can. Metall. Q., 1989, vol. 28, pp. 323–30.

    Article  CAS  Google Scholar 

  7. V.V. Buwa, D. Gerlach, F. Durst, and E. Schlücker: Chem. Eng. Sci., 2007, vol. 62, pp. 7119–32.

    Article  CAS  Google Scholar 

  8. S. Sharaf, M. Zednikova, M.C. Ruzicka, and B.J. Azzopardi: Chem. Eng. J., 2016, vol. 288, pp. 489–504.

    Article  CAS  Google Scholar 

  9. S.K. Majumder, G. Kundu, and D. Mukherjee: Chem. Eng. J., 2006, vol. 122, pp. 1–10.

    Article  CAS  Google Scholar 

  10. G. Besagni and F. Inzoli: Chem. Eng. Sci., 2017, vol. 170, pp. 270–96.

    Article  CAS  Google Scholar 

  11. W. Yao and C. Morel: Int. J. Heat Mass Transfer., 2004, vol. 47, pp. 307–28.

    Article  CAS  Google Scholar 

  12. Y. Liu, M. Ersson, H. Liu, P.G. Jönsson, and Y. Gan: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 555–77.

    Article  Google Scholar 

  13. K. Krishnapisharody and G. Irons: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 1486–98.

    Article  Google Scholar 

  14. S. Sasaki, K. Hayashi, and A. Tomiyama: Exp. Therm. Fluid Sci., 2016, vol. 72, pp. 67–74.

    Article  Google Scholar 

  15. V. Sahajwalla, A. Castillejos, and J. Brimacombe: Metall. Trans. B., 1990, vol. 21B, pp. 71–80.

    Article  CAS  Google Scholar 

  16. L. Shui, Z. Cui, X. Ma, M. Akbar Rhamdhani, A. Nguyen, and B. Zhao: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 1218–25.

    Article  Google Scholar 

  17. J. Ma, Y. Song, P. Zhou, W. Cheng, and S. Chu: Exp. Therm. Fluid Sci., 2018, vol. 92, pp. 409–19.

    Article  CAS  Google Scholar 

  18. K. Tacke, H. Schubert, D. Weber, and K. Schwerdtfeger: Metall. Trans. B., 1985, vol. 16B, pp. 263–75.

    Article  Google Scholar 

  19. S.C. Koria and S. Singh: Steel Res., 1990, vol. 61, pp. 287–94.

    Article  CAS  Google Scholar 

  20. M.A. Castello-Branco and K. Schwerdtfeger: Metall. Mater. Trans. B., 1994, vol. 25B, pp. 359–71.

    Article  CAS  Google Scholar 

  21. M. Iguchi, K. Nozawa, and Z. Morita: ISIJ Int., 1991, vol. 31, pp. 952–9.

    Article  CAS  Google Scholar 

  22. M. Iguchi, K. Nozawa, H. Tomida, and Z. Morita: ISIJ Int., 1992, vol. 32, pp. 747–54.

    Article  CAS  Google Scholar 

  23. M. Iguchi, H. Ueda, and T. Uemura: Int. J. Multiphase Flow., 1995, vol. 21, pp. 861–73.

    Article  CAS  Google Scholar 

  24. X. Hao, Z. Lu, K. Wei, Z. Zhang, L. Hu, B. Li, Z. Wen, F. Su, Y. Yu, R. Bassa: in Proceedings of the Copper 2013 International Copper Conference, 2013, pp. 451–59.

  25. Y. Higuchi and Y. Tago: ISIJ Int., 2001, vol. 41, pp. 1454–9.

    Article  CAS  Google Scholar 

  26. Q. Yang, B. Björkman, and G. Carlsson: Steel Res., 1997, vol. 68, pp. 107–14.

    Article  CAS  Google Scholar 

  27. V. Arghode, A. Gupta: in 46th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 2008, pp. 1–12.

  28. H.M. Prasser, A. Böttger, and J. Zschau: Flow Meas. Instrum., 1998, vol. 9, pp. 111–9.

    Article  CAS  Google Scholar 

  29. R. Kipping, R. Brito, E. Scheicher, and U. Hampel: Int. J. Multiphase Flow., 2016, vol. 85, pp. 86–95.

    Article  CAS  Google Scholar 

  30. R. Kipping, H. Kryk, E. Schleicher, M. Gustke, and U. Hampel: Chem. Eng. Technol., 2017, vol. 40, pp. 1425–33.

    Article  CAS  Google Scholar 

  31. M. Schubert, M. Piechotta, M. Beyer, E. Schleicher, U. Hampel, and J. Paschold: Chem. Eng. Res. Des., 2016, vol. 111, pp. 138–46.

    Article  CAS  Google Scholar 

  32. J. Mi, G. Nathan, and R. Luxton: Exp. Fluids., 2000, vol. 28, pp. 93–4.

    Article  Google Scholar 

  33. H. Yan, J. Xiao, Y. Song, Z. Hu, Z. Tan, and L. Liu: Trans. Nonferrous Met. Soc. China., 2019, vol. 29, pp. 213–21.

    Article  CAS  Google Scholar 

  34. J. Xiao, H. Yan, M. Schubert, S. Unger, L. Liu, E. Schleicher, and U. Hampel: J. Cent. South Univ., 2019, vol. 26, pp. 2068–76.

    Article  CAS  Google Scholar 

  35. H. Yan, J. Xiao, Z. Hu: in 2016-Sustainable Industrial Proccessing Summit, Flogen Star Outreach: 2016, pp. 199–12.

  36. M. Beyer, L. Szalinski, E. Schleicher, Wire-Mesh Sensor Data Processing Software User Manual and Software Description. (Helmholtz-Zentrum Dresden-Rossendorf, 2018), http://mpmt.de/de/downloads/wire-mesh-sensor-data-processing-software/view. Accessed 05 November 2018.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, National Natural Science Foundation of China (Grant No. 51906262) and Natural Science Foundation of Hunan Province (Grant No. 2020JJ5735).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 14, 2021, accepted September 29, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Yan, H., Schubert, M. et al. Effect of Nozzle Geometry on Centerline Gas Holdup in Submerged Gas Injection. Metall Mater Trans B 52, 4002–4011 (2021). https://doi.org/10.1007/s11663-021-02315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02315-2

Navigation