Skip to main content
Log in

An investigation on the effect of open hole number and scheme on single-phase flow of a swirl flow bubble generator

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A swirl flow bubble generator with a unique adjustment scheme was developed to adapt to liquid feed flow rate variation. However, a study on the scheme and flow field of the bubble generator has not been reported in the literature. Particle image velocimetry and computational fluid dynamics were utilized to explore the flow field and adjustment scheme. The results showed that the standard k-ε model could more accurately describe the flow pattern than other turbulence models, and the pressure drop difference between experiments and simulations was less than 6%. A mathematical expression was established to quantitatively describe the relationship among the pressure drop, open hole number, and liquid flow rate. The pressure drop was proportional to the feed flow rate or inlet velocity square and inversely proportional to the power of 1.86 of the open hole number. Interestingly, the pressure drop of different open hole schemes with the same open hole number of 12 was close to 55 kPa. The spiral-bottom open hole schemes could provide a higher turbulent dissipation rate for both the vortex chamber and straight pipe section. This work can guide the bubble generator adjustment and fill the gap in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

CAD:

computer aided design

CCD:

charge coupled device

CFD:

computational fluid dynamics

CWT:

clean water technology

ICEM:

Integrated computer engineering and manufacturing

PBM:

population balance model

PISO:

pressure-implicit with splitting of operators

PIV:

particle image velocimetry

PRESTO:

pressure staggering option

QUICK:

quadratic upstream interpolation for convective kinematics

RANS:

Reynolds averaged Navier-Stokes

RNG:

renormalization group

RSM:

Reynolds stress model

SCDM:

SpaceClaim direct modeler

SST:

shear stress transport

A:

constant of proportional [-]

a, b:

model parameters [-]

d:

hole diameter [m]

Dci :

internal diameter of cavity [m]

Dco :

outer diameter of cavity [m]

Dia :

inlet diameter for gas phase [m]

Dil :

inlet diameter for liquid phase [m]

DMax :

maximum stable bubble diameter [m]

Do :

diameter of vortex chamber and straight pipe section [m]

\(\rm{D}_{T_{ij}}\) :

turbulent diffusion term in Reynolds Stress Model [kg/m/s3]

Eij :

time-averaged strain rate [1/s]

Fij :

production of system rotation term in Reynolds Stress Model [kg/m/s3]

Gk :

generation term of turbulent kinetic energy resulting from the mean velocity gradient [kg/m/s3]

Gω :

generation term of specific dissipation rate [kg/m3/s2]

H:

total height [m]

h:

height of the vortex chamber [m]

k:

proportional coefficient (—) or turbulent kinetic energy [m2/s2]

N:

open hole number [-]

p:

pressure [Pa]

Pij :

stress production term in Reynolds Stress Model [kg/m/s3]

Q:

Q criterion [1/s2]

Qlf :

liquid feed flow rate [m3/s]

r:

radial position [m]

R:

radius [m]

S:

spiral open hole scheme [-]

t:

time [s]

u:

velocity [m/s]

u0 :

liquid inlet velocity [m/s]

x:

space coordinate [m]

Yk :

dissipation of turbulent kinetic energy due to turbulence [kg/m/s3]

Yω :

dissipation of specific dissipation rate due to turbulence [kg/m3/s2]

Z:

axial position [m]

ΔP:

pressure drop [Pa]

α :

inclination angle of the holes [o]

ε :

turbulent dissipation rate [m2/s3]

ε ij :

dissipation term in Reynolds Stress Model [kg/m/s3]

θ :

angle of hole arrangement [o]

μ :

viscosity [Pa·s]

μ t :

turbulent viscosity [Pa·s]

ρ :

density [kg/m3]

σ :

surface tension [N/m]

σ k :

Prandtl number for turbulent kinetic energy k

σ ε :

Prandtl number for turbulent dissipation rate ε

ω :

specific dissipation rate [1/s]

ω k :

angular velocity [1/s]

\(\tilde{\Omega}_{ij}\) :

mean rate-of-rotation tensor [1/s]

φ ij :

pressure strain term in Reynolds Stress Model [kg/m/s3]

References

  1. H. X. Xu, J. T. Liu, L. H. Gao, Y. T. Wang, X. W Deng and X. B. Li, Sep. Sci. Technol., 49, 1170 (2014).

    Article  CAS  Google Scholar 

  2. X. L. Cai, J. Q. Chen, M. L. Liu, Y. P. Ji and S. An, Sep. Purif. Technol., 176, 134 (2017).

    Article  CAS  Google Scholar 

  3. J. Saththasivam, K. Loganathan and S. Sarp, Chemosphere, 144, 671 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Q. Huang and X. Y. Long, Energies, 13, 927 (2020).

    Article  CAS  Google Scholar 

  5. Y. R. Feng, H. F. Mu, X. Liu, Z. L. Huang, H. M. Zhang, J. D. Wang and Y. R. Yang, Ind. Eng. Chem. Res., 59, 8447 (2020).

    Article  CAS  Google Scholar 

  6. Y. F. Wang, Z. C. Pan, J. Fen and Q. W. Qing, Miner. Eng., 145, 106066 (2020).

    Article  CAS  Google Scholar 

  7. B. Q. Xie, C. J. Zhou, J. X. Chen, X. T. Huang and J. S. Zhang, Chem. Eng. Sci., 247, 117105 (2022).

    Article  CAS  Google Scholar 

  8. H. S. Alam, P. Sutikno, T. A. Fauzi Soelaiman and A. T. Sugiarto, Eng. Appl. Comp. Fluid Mech., 16, 677 (2022).

    Google Scholar 

  9. K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka and D. Kobayashi, Chem. Eng. Sci., 66, 3172 (2011).

    Article  CAS  Google Scholar 

  10. Y.-B. Kim, H.-S. Lee, L. Francis and Y.-D. Kim, J. Membr. Sci., 588, 117197 (2019).

    Article  CAS  Google Scholar 

  11. X. Y. Wang, Y. Shuai, X. R. Zhou, Z. L. Huang, Y. Yang, J. Y. Sun, H. M. Zhang, J. D. Wang and Y. R. Yang, Chem. Eng. Process., 154, 108022 (2020).

    Article  CAS  Google Scholar 

  12. M. Wu, S. Y. Yuan, H. Y. Song and X. B. Li, Chem. Eng. Process., 170, 108697 (2022).

    Article  CAS  Google Scholar 

  13. I. Levitsky, D. Tavor and V. Gitis, Chem. Eng. Technol., 39, 1537 (2016).

    Article  CAS  Google Scholar 

  14. X. Xu, X. L. Ge, Y. D. Qian, B. H. Zhang, H. L. Wang and Q. Yang, Chem. Eng. Res. Des., 138, 13 (2018).

    Article  CAS  Google Scholar 

  15. D. I. Mawarni, W. E. Juwana, K. A. Yuana, W. Budhijanto, Deendarlianto and Indarto, J. Water Process Eng., 48, 102846 (2022).

    Article  Google Scholar 

  16. Y. L. Chang, L. Xu, J. P. Li, X. Jiang, Y. Huang, W. J. Lv and H. L. Wang, Ind. Eng. Chem. Res., 60, 1423 (2021).

    Article  CAS  Google Scholar 

  17. M. Colic, W. Morse and J. D. Miller, Int. J. Environ. Pollut., 30, 296 (2007).

    Article  CAS  Google Scholar 

  18. A. R. Al-Obaidi, Exp. Tech., 44, 329 (2020).

    Article  Google Scholar 

  19. A. R. Al-Obaidi and R. Mishra, Arabian J. Sci. Eng., 45, 5657 (2020).

    Article  Google Scholar 

  20. A. R. Al-Obaidi, Heliyon, 5, e01910 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. A. R. Al-Obaidi and H. Towsyfyan, J. Appl. Fluid Mech., 12, 2057 (2019).

    Article  Google Scholar 

  22. A. R. Al-Obaidi, Arch. Acoust., 45, 541 (2020).

    Google Scholar 

  23. A. R. Al-Obaidi, Int. J. Fluid Mech. Res., 47, 501 (2020).

    Article  Google Scholar 

  24. A. R. Al-Obaidi, Arch. Acoust., 44, 59 (2019).

    Google Scholar 

  25. X. H. Li, W. B. Su, Y. Liu, X. K. Yan, L. J. Wang and H. J. Zhang, Asia-Pac. J. Chem. Eng., 16, e2611 (2020).

    Google Scholar 

  26. S. L. Yan, Y. Zhang, C. Peng, X. Y. Yang, Y. Huang, Z. S. Bai and X. Xu, Chin. J. Chem. Eng., 45, 229 (2022).

    Article  Google Scholar 

  27. S. L. Yan, Y. Zhang, X. Y. Yang, Y. Huang, Z. S. Bai and X. Xu, Ind. Eng. Chem. Res., 60, 6006 (2021).

    Article  CAS  Google Scholar 

  28. X. K. Yan, Y. P. Yao, S. Q. Meng, S. Y. Zhao, L. J. Wang, H. J. Zhang and Y. J. Cao, Chem. Eng. Res. Des., 174, 1 (2021).

    Article  CAS  Google Scholar 

  29. A. R. Al-Obaidi, Int. J. Nonlinear Sci. Numer. Simul., 20, 487 (2019).

    Article  Google Scholar 

  30. A. R. Al-Obaidi, J. Mech. Eng. Sci., 14, 6570 (2020).

    Article  CAS  Google Scholar 

  31. A. R. Al-Obaidi, Heat Transfer, 49, 2000 (2020).

    Article  Google Scholar 

  32. A. R. Al-Obaidi, J. Appl. Fluid Mech., 12, 445 (2019).

    Article  Google Scholar 

  33. A. R. Al-Obaidi, J. Phys. Conf. Ser., 1279, 012069 (2019).

    Article  Google Scholar 

  34. A. R. Al-Obaidi, Int. J. Model. Simul. Sci. Comput., 12, 2150045 (2021).

    Article  Google Scholar 

  35. A. R. Al-Obaidi and A. A. Mohammed, J. Eng. Sci. Technol. Rev., 12, 70 (2019).

    Article  CAS  Google Scholar 

  36. A. R. Al-Obaidi, Iran. J. Sci. Technol. Trans. Mech. Eng., 45, 441 (2021).

    Article  Google Scholar 

  37. X. Y. Wang, Y. Shuai, H. M. Zhang, J. Y. Sun, Y. Yang, Z. L. Huang, B. B. Jiang, Z. W. Liao, J. D. Wang and Y. R. Yang, Chem. Eng. J., 403, 126397 (2021).

    Article  CAS  Google Scholar 

  38. B. E. Launder and D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London, England (1972).

    Google Scholar 

  39. V. Yakhot and S. A. Orszag, J. Sci. Comput., 1, 3 (1986).

    Article  Google Scholar 

  40. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput. Fluids, 24, 227 (1995).

    Article  Google Scholar 

  41. F. R. Menter, AIAA J., 32, 1598 (1994).

    Article  Google Scholar 

  42. B. E. Launder, G. J. Reece and W Rodi, J. Fluid Mech., 68, 537 (1975).

    Article  Google Scholar 

  43. M. M. Gibson and B. E. Launder, J. Fluid Mech., 86, 491 (1978).

    Article  Google Scholar 

  44. B. E. Launder, Int. J. Heat Fluid Flow, 10, 282 (1989).

    Article  Google Scholar 

  45. P. Yan, H. B. Jin, G. X. He, X. Y. Guo, L. Ma, S. H. Yang and R. Y. Zhang, Chem. Eng. Res. Des., 154, 47 (2020).

    Article  CAS  Google Scholar 

  46. J. X. Ye, Y. X. Xu, X. F. Song and J. G. Yu, Chem. Eng. Res. Des., 144, 135 (2019).

    Article  CAS  Google Scholar 

  47. J. O. Hinze, AIChE J., 1, 289 (1955).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the calculation resource provided by professor Jianguo Yu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Chen or Xingfu Song.

Additional information

Credit Author Contributions

Yuxue Wu: Methodology, Software, Writing-original draft. Hang Chen: Data curation, Formal analysis. Xingfu Song: Validation, Supervision, Writing-review & editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, H. & Song, X. An investigation on the effect of open hole number and scheme on single-phase flow of a swirl flow bubble generator. Korean J. Chem. Eng. 40, 754–769 (2023). https://doi.org/10.1007/s11814-022-1343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1343-5

Keywords

Navigation