Skip to main content
Log in

Introducing the Planar Laser-Induced Fluorescence Technique (PLIF) to Measure Mixing Time in Gas-Stirred Ladles

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The planar laser-induced fluorescence (PLIF) technique was implemented to measure mixing time in a 1/17 water model of a 200-ton ladle furnace. The results were compared to those obtained using the conventional method of pH probes. PLIF determinations were done at two different planes, and pH probe determinations were performed at two different locations. The results suggest that mixing times measured by PLIF are similar to those obtained under optimal conditions by the pH probe and that PLIF technique is more accurate and less sensitive to the location of the measurement than the pH probe method. In addition, the particle image velocimetry (PIV) technique was used to measure the effect of the immersed probe on the fluid-dynamic structure of the system. The presence of the probe affects greatly fluid dynamics and consequently the mixing behavior, which could explain the differences found in its mixing time measurements at different probe locations. This study shows the feasibility of the PLIF technique used to measure mixing time in physical models of gas-stirred ladles; it is not intrusive and allows the visualization of the mixing phenomena in a complete plane of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1.E. L. Paul, V. A. Atiemo-Obeng, S. M. Kresta: Handbook of industrial mixing: science and practice, 1st ed., Wiley, Hoboken, 2004, pp. 164-176.

    Google Scholar 

  2. 2.G. Ascanio: Chin. J. Chem. Eng., 2015, vol. 23, pp. 1065-1073.

    Article  Google Scholar 

  3. L. E. JardónPérez, A. Amaro-Villeda, A. N. Conejo, C. González-Rivera, M. A. Ramírez-Argáez: Mater. Manuf. Process., 2018, vol. 33, pp. 882-890.

    Article  Google Scholar 

  4. 4.D. Mazumdar, P. Dhandapani, R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286-295.

    Article  CAS  Google Scholar 

  5. 5.Y. Liu, M. Ersson, H. Liu, P. G. Jönsson, Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 555-577.

    Article  Google Scholar 

  6. 6.R. P. Nunes, J. A. M. Pereira, A. C. F. Vilela, F. T. V. Der Laan: J. Eng. Sci. Technol., 2007, vol. 2, pp. 139-150.

    Google Scholar 

  7. K. Michalek, K. Gryc, J. Morávka: Metalurgija Zagreb, Croatia, 2009, vol. 48, pp. 215-218.

    CAS  Google Scholar 

  8. 8.D. Mazumdar, R. I. Guthrie: ISIJ Int., 2005, vol. 35, pp. 1-20.

    Article  Google Scholar 

  9. 9.M. Madan, D. Satish, D. Mazumdar: ISIJ Int., 2005, vol. 45, pp. 677-685.

    Article  CAS  Google Scholar 

  10. 10.J. Mandal, S. Patil, M. Madan, D. Mazumdar: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 479-487.

    Article  CAS  Google Scholar 

  11. 11.C. A. Llanos, S. Garcia, J. A. Ramos-Banderas, J. D. J. Barreto, G. Solorio: ISIJ Int., 2010, vol. 50, pp. 396-402.

    Article  CAS  Google Scholar 

  12. H. Y. Tang, J. S. Li, C. H. Xie, S. F. Yang, K. M. Sun, D. S. Wen: Int. J. Miner. Metall. Mater., 2009, vol. 16, pp. 383-386.

    Article  CAS  Google Scholar 

  13. 13.R. González‐Bernal, G. Solorio‐Diaz, A. Ramos‐Banderas, E. Torres‐Alonso, C. A. Hernández‐Bocanegra, R. Zenit: Steel Res. Int., 2018, vol. 89, pp. 1700281.

    Article  Google Scholar 

  14. 14.A. N. Conejo, S. Kitamura, N. Maruoka, S. J. Kim: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 914-923.

    Article  Google Scholar 

  15. 15.J. P. Crimaldi: Exp. Fluids, 2008, vol. 44, pp. 851-863.

    Article  CAS  Google Scholar 

  16. 16.M. M. Alvarez, P. E. Arratia, F. J. Muzzio: Can. J. Chem. Eng., 2002, vol. 80, pp. 546-557.

    Article  CAS  Google Scholar 

  17. 17.J. F. Hall, M. Barigou, M. J. Simmons, E. H. Stitt: Ind. Eng. Chem. Res., 2004, vol. 43, pp. 4149-4158.

    Article  CAS  Google Scholar 

  18. 18.M. J. H. Simmons, H. Zhu, W. Bujalski, C. J. Hewitt, A. W. Nienow: Chem. Eng. Res. Des., 2007, vol. 85, pp. 551-559.

    Article  CAS  Google Scholar 

  19. 19.R. Zadghaffari, J. S. Moghaddas, J. Revstedt: Comput. Chem. Eng., 2009, vol. 33, pp. 1240-1246.

    Article  CAS  Google Scholar 

  20. 20.Y. Hu, Z. Liu, J. Yang, Y. Jin, Y. Cheng: Chem. Eng. Sci., 2010, vol. 65, pp. 4511-4518.

    Article  CAS  Google Scholar 

  21. 21.Y. Hu, W. Wang, T. Shao, J. Yang, Y. Cheng: Chem. Eng. Res. Des., 2012, vol. 90, pp. 524-533.

    Article  CAS  Google Scholar 

  22. A. Busciglio, F. Grisafi, F. Scargiali, A. Brucato: Chem. Eng. J. Amsterdam Neth., 2014, vol. 254, pp. 210-219.

    CAS  Google Scholar 

  23. Z. Trad, J. P. Fontaine, C. Larroche, C. Vial: Chem. Eng. J. Amsterdam Neth., 2017, vol. 329, pp. 142-155.

    CAS  Google Scholar 

  24. 24.P. Luo, Y. Cheng, Z. Wang, Y. Jin, W. Yang: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 863-870.

    Article  CAS  Google Scholar 

  25. P. Luo, H. Jia, C. Xin, G. Xiang, Z. Jiao, H. Wu: Chem. Eng. J. Amsterdam Neth., 2013, vol. 228, pp. 554-564.

    CAS  Google Scholar 

  26. 26.G. Pan, H. Meng: AIChE J., 2001, vol. 47, pp. 2653-2665.

    Article  CAS  Google Scholar 

  27. 27.M. Hoffmann, M. Schlüter, N. Räbiger: Chem. Eng. Sci., 2006, vol. 61, pp. 2968-2976.

    Article  CAS  Google Scholar 

  28. 28.X. Li, Z. Mi, S. Tan, X. Wang, R. Wang, H. Ding: Prog. Nucl. Energy, 2019, vol. 110, pp. 90-102.

    Article  CAS  Google Scholar 

  29. J. W. Zhang, S. F. Liu, C. Cheng, W. F. Li, X. L. Xu, H. F. Liu, F. C. Wang: Chem. Eng. J. Amsterdam Neth., 2019, vol. 358, pp. 1561-1573.

    CAS  Google Scholar 

  30. 30.R. Koitzsch, H. J. Odenthal, H. Pfeifer: Steel Res. Int., 2007, vol. 78, pp. 473-481.

    Article  CAS  Google Scholar 

  31. 31.A. M. Amaro-Villeda, M. A. Ramirez-Argaez, A. N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1-8.

    Article  CAS  Google Scholar 

  32. C. P. Ortiz-Olvera: U. N. A. M., Ciudad de México, Bachelor Thesis, 2018.

Download references

Acknowledgments

The authors thank DGAPA-UNAM for the financial support through the Project IN115619. Luis Enrique Jardón-Pérez, CVU 624968, as a student registered in the Doctoral Program in Chemical Engineering at the Universidad Nacional Autónoma de México (UNAM), thanks CONACYT for the financial support through a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Ramírez-Argáez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardón-Pérez, L.E., Amaro-Villeda, A., González-Rivera, C. et al. Introducing the Planar Laser-Induced Fluorescence Technique (PLIF) to Measure Mixing Time in Gas-Stirred Ladles. Metall Mater Trans B 50, 2121–2133 (2019). https://doi.org/10.1007/s11663-019-01631-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01631-y

Navigation