Skip to main content
Log in

Utilization of the Planar Laser-Induced Fluorescence Technique (PLIF) to Measure Temperature Fields in a Gas-Stirred Ladle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A 1/17th water physical model of a 200-ton steel ladle furnace with a single gas injection was used to simulate bath heating using a single burner to mimic the heat flux due to electric arcs in the industrial steel ladle. Two phases were considered, using water to simulate the molten steel and air to simulate the argon injection at a flow rate of 1.54 NL min−1. The planar Laser-Induced Fluorescence (PLIF) technique was for the first time experimentally implemented to measure temperature fields in a longitudinal plane of the gas-stirred ladle model. PLIF employs a laser source of 532-nm wavelength to light water seeded with rhodamine B, which emits fluorescence depending on its temperature, after a complex calibration is made. Next, the fluorescence is captured by a camera with a 550-nm wavelength filter. The PLIF measurements were validated by local thermocouple measurements at five different locations in the measurement plane. Temperature fields measured by PLIF are in good agreement with those obtained locally by thermocouples, so the PLIF technique can be used to measure temperature fields with the advantage of getting a complete temperature contour field, in contrast to point values of temperatures with thermocouples. Experiments were carried out to study the thermal mixing for two common tuyere positions, i.e., axisymmetric and eccentric (mid-radius) positions. Results on the injection mode show that axisymmetric gas injection is a more efficient heat transfer configuration between the burner and the liquid phase than is the symmetric injection mode for the particular heating configuration studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ganguly and S. Chakraborty: ISIJ Int., 2004, vol. 44(3), pp. 573-546.

    Article  Google Scholar 

  2. A. Deodhar, U. Singh, R. Shukla, B. P. Gautham and A. K. Singh: Metall. Mater. Trans. B, 2017, vol. 48(2), pp. 1217-1229.

    Article  CAS  Google Scholar 

  3. Y. Pan, C. E. Grip and B. Björkman: Scand. J. Metall., 2003, vol. 32(2), pp. 71-85.

    Article  CAS  Google Scholar 

  4. S. Chatterjee and K. Chattopadhyay: Ironmaking & Steelmaking, 2017, vol. 44(6), pp. 403-412.

    Article  CAS  Google Scholar 

  5. [5 Y. Liu, M. Ersson, H. Liu, P. G. Jönsson and Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50(1), pp. 555-577.

    Article  CAS  Google Scholar 

  6. D. Mazumdar: Steel Res. Int., 2019, vol. 90(4), p. 1800279.

  7. S. Lopez-Ramirez, J. De Barreto, P. Vite-Martinez, J. R. Serrano and C. Duran-Valencia: Metall. Mater. Trans. B, 2004, vol. 35(5), pp. 957-66.

    Article  Google Scholar 

  8. W. Jianjun, D. Chaoshan, Z. Li, Z. Yuzhu, L. Zhenghang and X. Zeqiang: Acta Metall. Sin., 1997, vol. 33(5), pp. 509-514.

    Google Scholar 

  9. AK Sinha, A Vassilicos (1998) Ironmak Steelmak, 25(5):387.

    CAS  Google Scholar 

  10. M. L. Lowry and Y. Sahai: Iron & steelmaker, 1992, vol. 19(3), pp. 81-86.

    CAS  Google Scholar 

  11. S. X. Liu, X. M. Yang, L. Du, L. Li, and C. Z. Liu: ISIJ Int., 2008, vol. 48(12), pp. 1712-1721.

    Article  CAS  Google Scholar 

  12. D. Y. Sheng and L. Jonsson: Metall. Mater. Trans. B, 2000, vol. 31(4), pp. 867-875.

    Article  Google Scholar 

  13. J. D. J. Barreto, M. B. Meza and R. D. Morales: ISIJ Int., 1996, vol. 36(5), pp. 543-552.

    Article  Google Scholar 

  14. S. Chatterjee and K. Chattopadhyay: Ironmaking & Steelmaking, 2017, vol. 44(6), pp. 413-420.

    Article  CAS  Google Scholar 

  15. M. Alizadeh, H. Edris and A. Shafyei (2008) J. Iron Steel Res. Int,. 15(2),. 7-13.

    Article  Google Scholar 

  16. A. Vargas-Zamora, J. Palafox-Ramos, R. D. Morales, M. Diaz-Cruz and J. D. J. Barreto-Sandoval: Metall. Mater. Trans. B, 2004, vol. 35(2), pp. 247-257.

    Article  Google Scholar 

  17. B Yang, H Lei, Q Bi, J Jiang, H Zhang, Y Zhao and JA Zhou (2018) Steel Res. Int. vol. 89(10), 1800173.

    Article  Google Scholar 

  18. H. Tang, L. Guo, G. Wu, H. Xiao, H. Yao, J. Zhang (2018) Metals, 8(6), 374.

    Article  Google Scholar 

  19. J. W. Hlinka and T. W. Miller: Iron Steel Eng., 1970, vol. 47(8), pp. 123-133.

    Google Scholar 

  20. Y. Pan and B. Björkman: ISIJ Int., 2002, vol. 42(6), pp. 614-623.

    Article  CAS  Google Scholar 

  21. H. Park, J. Park and S. Y. Jung: Int. J. Heat Mass Transfer, 2019, vol. 139, pp. 293-302.

    Article  Google Scholar 

  22. S. Grafsrønningen and A. Jensen: Int. J. Heat Mass Transfer, 2012, vol. 55(15-16), pp. 4195-4206.

    Article  Google Scholar 

  23. A. S. Nebuchinov, Y. A. Lozhkin, A. V. Bilsky and D. M. Markovich: Exp. Therm. Fluid Sci., 2017, vol. 80, pp. 139-146.

    Article  Google Scholar 

  24. R. Taher and C. Abid: Heat Mass Transfer, 2018, vol. 54(5), pp. 1453-66.

    Article  CAS  Google Scholar 

  25. G. Ascanio: Chin. J. Chem. Eng., 2015, vol. 23(7), pp. 1065-1076.

    Article  Google Scholar 

  26. L. E. Jardón-Pérez, A. M. Amaro-Villeda, C. González-Rivera, G. Trápaga, A. N. Conejo and M. A. Ramírez-Argáez: Metall. Mater. Trans. B, 2019, vol. 50(5), pp. 2121-2133.

    Article  Google Scholar 

  27. A. H. Thaker, S. V. Bhujbal and V. V. Buwa: Chem. Eng. J. (Amsterdam, Neth.), (2019, in press), 122036. (2019).

  28. L. E. Jardón-Pérez, D. R. González-Morales, G. Trápaga, C. González-Rivera, and M. A. Ramírez-Argáez: Metals, 2019, vol. 9(5), pp. 555.

  29. R. Koitzsch, H. J. Odenthal and H. Pfeifer: Steel Res. Int., 2007, vol. 78(6), pp. 473-81.

    CAS  Google Scholar 

  30. D. Mazumdar, H. B. Kim and R. I. L. Guthrie: Ironmaking & Steelmaking, 2000, vol. 27(4), pp. 302-309.

    Article  CAS  Google Scholar 

  31. M. Neifer, S. Rödl and D. Sucker: Steel Res., 1993, vol. 64(1), pp. 54-62.

    Article  CAS  Google Scholar 

  32. P. Low, N. Takama, B. Kim and C. Bergaud: TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, 1rs ed., IEEE, Lyon, France, 2007, pp. 1055-1058.

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank DGAPA-UNAM for financial support through Project IN115619. Luis Enrique Jardón-Pérez, CVU 624968, is a student registered in Doctoral Program in Chemical Engineering at the UNAM; thanks to CONACYT for Ph. D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ramírez-Argáez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardón-Pérez, L.E., Amaro-Villeda, A.M., Trápaga-Martínez, G. et al. Utilization of the Planar Laser-Induced Fluorescence Technique (PLIF) to Measure Temperature Fields in a Gas-Stirred Ladle. Metall Mater Trans B 51, 2510–2521 (2020). https://doi.org/10.1007/s11663-020-01944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01944-3

Navigation