Skip to main content

Advertisement

Log in

Influence of Electropulsing Treatment on the Initial Solidification of Molten Steel During Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An electropulsing-assisted mold simulator (EPMS) technique was developed to investigate the effect of pulsed electric current on the initial solidification behavior of molten steel during the process of continuous casting. The results indicated that the variation of mold hot surface temperatures in the meniscus area decreased from 375.8 K to 394 K for the case without electropulsing treatment (EPT) to 363.5 K to 377.3 K for the one with EPT. The mold surface heat fluxes fluctuated around the baseline of 0.83 and 2.42 MW/m2 in the cases with and without EPT, respectively, which indicated that a higher thermal resistance between the initial shell and copper mold was introduced by employing the EPT. The crystal fraction of slag films increased from 69.8 to 77.9 pct, whereas the grain size of mold flux film decreased, when compared the case of EPT treatment with the benchmark one, which suggested that the pulsed electric current promotes the movement of molten clusters and particles, leading to the enhancement of mold flux crystallization and the improvement of thermal resistance. Moreover, the solidification structure of steel along the direction of solidification (from the mold to melt) includes a fine chilled grain layer close to the mold, a columnar dendrite layer in the middle, and equiaxed grains next to the melt core, in which a compacted microstructure with smaller secondary dendrite arm spacing was observed in the case of the EPT. The results demonstrate that the EPT could refine the as-cast solidification microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 493–509.

    Article  Google Scholar 

  2. J. Brimacombe and K. Sorimachi: Metall. Trans. B, 1977, vol. 8B, pp. 489–505.

    Article  Google Scholar 

  3. S. Mazumdar and S. Ray: Sadhana, 2001, vol. 26, pp. 179–98.

    Article  Google Scholar 

  4. J. Birat, M. Larrecq, J. Lamant, and J. Petegnief: Steelmaking Conf. Proc., ISS-AIME, Warrendale, PA, 1991, vol. 74, pp. 39–40.

  5. K. Schmidt, F. Friedel, K. Imlau, W. Jager, and K. Muller: Steel Res. Int., 2003, vol. 74, pp. 659–66.

    Article  Google Scholar 

  6. E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1985, vol. 16B, pp. 605–25.

    Article  Google Scholar 

  7. K. Schwerdtfeger and H. Sha: Metall. Mater. Trans. B, 2012, vol. 31B, pp. 813–26.

    Google Scholar 

  8. P. Ramirez-Lopez, K. Mills, P. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 109–122.

    Article  Google Scholar 

  9. D. Bouchard, J. Nadeau, D. Simard, F. Hamel, B. Howes, and C. Paumelle: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 403–11.

    Article  Google Scholar 

  10. A. Badri, T. Natarajan, C. Snyder, K. Powers, F. Mannion, and A. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 355–71.

    Article  Google Scholar 

  11. E. Ko and I. Sohn: 5th Int. Congr. Sci. Technol. Steelmak., Dresden, Germany, TU Bergakademie Freiberg, Germany, 2012.

  12. M. Santillana: Ph.D. Dissertation, TU Delft University of Technology, Delft, Netherlands, 2013.

  13. J. Savage and W. Pritchard: J. Iron Steel Inst. London, 1954, vol. 178, pp. 269–77.

    Google Scholar 

  14. K. Blazek, I. Saucedo, and H. Tsai: Steelmaking Conf. Proc., ISS-AIME, Warrendale, PA, 1988, vol. 71, pp. 411–21.

  15. W. Wang, Z. Lou, and H. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1034–45.

    Article  Google Scholar 

  16. P. Lyu, W. Wang, X. Long, K. Zhang, E. Gao, and R. Qin: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 78–88.

    Article  Google Scholar 

  17. H. Zhang and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 779–93.

    Article  Google Scholar 

  18. P. Lyu, W. Wang, and H. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 247–59.

    Article  Google Scholar 

  19. H. Zhang and W. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 920–31.

    Article  Google Scholar 

  20. H. Zhang, W. Wang, F. Ma, and L. Zhou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2361–73.

    Article  Google Scholar 

  21. B. Zi, K. Yao, W. Liu, J. Cui, and Q. Ba: Rare Metal Mater. Eng., 2003, vol. 32, pp. 9–12.

    Google Scholar 

  22. J. Barnak, A. Sprecher, and H. Conrad: Scripta Metall. Mater., 1995, vol. 32, pp. 879–84.

    Article  Google Scholar 

  23. S. He, J. Wang, B. Sun, and X. Zhou: T. Nonferr. Met. Soc., 2005, vol. 12, pp. 275–78.

    Google Scholar 

  24. H. Sun, D. Lv, W. Li, and Y. Jiang: J. Harbin Univ. Commerce, 2011, vol. 27, pp. 733–40.

    Google Scholar 

  25. X. Liao, Q. Zhai, J. Luo, W. Chen, and Y. Gong: Acta Mater., 2007, vol. 55, pp. 3103–09.

    Article  Google Scholar 

  26. D. Rabiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert: Acta Mater., 2014, vol. 79, pp. 327–38.

    Article  Google Scholar 

  27. Y. Zhou, S. Xiao, and J. Guo: Mater. Lett., 2004, vol. 58, pp. 1948–51.

    Article  Google Scholar 

  28. Z. Lu, C. Guo, P. Li, Z. Wang, Y. Chang, G. Tang, and F. Jiang: J. Alloys Compd., 2017, vol. 708, pp. 834–43.

    Article  Google Scholar 

  29. S. Ahmed and E. Mckannan: Mater. Sci. Technol., 1994, vol. 10, pp. 941–46.

    Article  Google Scholar 

  30. M. Nakada, Y. Shiohara, and M. Flemings: ISIJ Int., 1990, vol. 30, pp. 27–33.

    Article  Google Scholar 

  31. Z. Zhao, J. Wang, and L. Liu: Mater. Manuf. Process., 2011, vol. 26, pp. 249–54.

    Article  Google Scholar 

  32. Y. Jiang, G. Tang, C. Shek, J. Xie, Z. Xu, and Z. Zhang: J. Alloys Compd., 2012, vol. 536, pp. 94–105.

    Article  Google Scholar 

  33. G. Li, L. Wang, Y. Liu, W. Zhang, X. Qiao, and Y. Wang: Rare Met. Mater. Eng., 2011, vol. 40, pp. 961–66.

    Article  Google Scholar 

  34. H. Liu, Z. Zhao, and L. Ma: Foundry Technol., 2008, vol. 29, pp. 1354–58.

    Google Scholar 

  35. B. Ma, Y. Zhao, J. Ma, H. Guo, and Q. Yang: J. Alloys Compd., 2013, vol. 549, pp. 77–81.

    Article  Google Scholar 

  36. R. Qin, A. Rahnama, W. Lu, X. Zhang, and B. Elliott-Bowman: Mater. Sci. Technol., 2014, vol. 30, pp. 1040–44.

    Article  Google Scholar 

  37. W. Lu and R. Qin: Adv. Mater. Res., 2014, vol. 922, pp. 441–45.

    Article  Google Scholar 

  38. H. Jeong, M. Kim, J. Park, C. Yim, J. Kim, O. Kwon, P. Madakashira, and H. Han: Mater. Sci. Eng. A, 2017, vol. 684, pp. 668–76.

    Article  Google Scholar 

  39. S. Lin, X. Chu, W. Bao, J. Gao, and L. Ruan: Mater. Sci. Technol., 2014, vol. 31, pp. 1131–38.

    Article  Google Scholar 

  40. Y. Zhou, J. Guo, M. Gao, and G. He: Mater. Lett., 2004, vol. 58, pp. 1732–36.

    Article  Google Scholar 

  41. H. Wang, G. Song, and G. Tang: Mater. Sci. Eng. A, 2016, vol. 662, pp. 456–67.

    Article  Google Scholar 

  42. H. Song, Z. Wang, X. He, and J. Duan: Sci. Rep., 2017, vol. 7, pp. 1–11.

    Article  Google Scholar 

  43. Z. Xu, G. Tang, S. Tian, and J. He: Mater. Sci. Eng. A, 2006, vol. 424, pp. 300–06.

    Article  Google Scholar 

  44. Y. Zhou, S. Xiao, and J. Guo: Mater. Lett., 2004, vol. 58, pp. 1948–51.

    Article  Google Scholar 

  45. Z. Xu, G. Tang, F. Ding, S. Tian, and H. Tian: Appl. Phys. A, 2007, vol. 88, pp. 429–33.

    Article  Google Scholar 

  46. D. Ben, H. Yang, Y. Ma, X. Shao, J. Pang, and Z. Zhang: Mater. Sci. Eng. A, 2018, vol. 725, pp. 28–32.

    Article  Google Scholar 

  47. Y. Zhou, J. Guo, W. Zhang, and G. He: J. Mater. Res., 2002, vol. 17, pp. 3012–14.

    Article  Google Scholar 

  48. Y. Zhu, T. Sandy, W.B. Lee, X. Liu, Y. Jiang, and G. Tang: J. Mater. Res., 2011, vol. 24, pp. 2661–69.

    Article  Google Scholar 

  49. H. Zhang, W. Wang, and L. Zhou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2137–52.

    Article  Google Scholar 

  50. X. Zhang and R. Qin: Sci. Rep., 2015, vol. 5, pp. 1–7.

    Google Scholar 

  51. S Riaz: Ironmak. Steelmak., 2013, vol. 39, pp. 409–13.

    Article  Google Scholar 

  52. F. Ma, Y. Liu, W. Wang, and H. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1902–11.

    Article  Google Scholar 

  53. J. Park, G. Kim, J. Kim, S. Park, and I. Sohn: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2582–94.

    Article  Google Scholar 

  54. D. Yoon, J. Cho, and S. Kim: Met. Mater. Int., 2015, vol. 21, pp. 580–87.

    Article  Google Scholar 

  55. J. Yang, Y. Cui, L. Wang, Y. Sasaki, J. Zhang, O. Ostrovski, and Y. Kashiwaya: Steel Res. Int., 2015, vol. 86, pp. 636–43.

    Article  Google Scholar 

  56. J. Zeng, W. Chen, G. Wang, C. Cao, and Y. Gao: Metall. Res. Technol., 2015, vol. 112, pp. 403–10.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. U1760202), Hunan Scientific Technology projects (Grant Nos. 2018RS3022 and 2018WK2051), and Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts140) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, G., Wang, W., Zhang, H. et al. Influence of Electropulsing Treatment on the Initial Solidification of Molten Steel During Continuous Casting. Metall Mater Trans B 50, 1608–1616 (2019). https://doi.org/10.1007/s11663-019-01601-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01601-4

Navigation