Skip to main content
Log in

A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 30 October 2017

This article has been updated

Abstract

In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 30 October 2017

    The reference for number 27 was incorrect. The correct reference is: 27. R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 961–76.

Abbreviations

\( \rho \) :

Density (kg/m3)

A :

Area (m2)

V :

Volume (m3)

\( m \) :

Mass (kg)

\( \dot{m} \) :

Mass flux (kg/s)

t :

Time (s)

G :

Gibbs energy (J/mol)

R :

Universal gas constant (J/(mol K))

T :

Temperature (K)

g :

Dimensionless Gibbs energy and gravitational acceleration (m/s2) in Chapter III.B

x, X :

Mole fraction

\( \mu \) :

Chemical potential of constituent (J/mol)

n :

Molar amount (mol)

b :

Mass constraint

\( a_{ij} \) :

Stoichiometric matrix

F :

Number of degrees of freedom

\( C \) :

Number of components

\( {{\Phi }} \) :

Total number of phases

\( {{\Gamma }} \) :

Dimensionless chemical potential of component

J :

Jacobian matrix

D :

Dimensionless driving force

\( \gamma \) :

Activity coefficient

\( \varepsilon \) :

First-order interaction parameter

\( {{\Delta }}g \) :

Gibbs energy of pair formation

\( Z \) :

Coordination number

Y :

Mass fraction and coordination equivalent fraction in Chapter 3.2

\( {\text{q}} \) :

Gibbs energy coefficient of the pair fraction polynomial (J/mol)

\( {{\omega }} \) :

Temperature independent part of the Gibbs energy coefficient (J/mol)

\( {{\eta }} \) :

Temperature dependent part of the Gibbs energy coefficient [J/(mol K)]

\( {\dot{\text{V}}} \) :

Volume flow rate (m 3 /s)

\( H \) :

Enthalpy (J)

S :

Entropy [J/(mol K)]

\( \dot{H} \) :

Enthalpy flux (J/s)

\( h \) :

Specific enthalpy (J/kg)

\( c_{\text{p}} \) :

Heat capacity (J/(kg K))

\( \varphi \) :

Enthalpy or mass source (J/s), (kg/s)

\( \alpha \) :

Volume fraction

\( h_{T} \) :

Heat transfer coefficient (W/(m2 K))

\( h_{Y} \) :

Mass transfer coefficient (m/s)

\( k \) :

Thermal conductivity (W/(m K))

\( I \) :

Momentum (kg*m)/s2

\( v \) :

Velocity (m/s)

\( R_{\text{p}} \) :

Plume momentum ratio (dimensionless)

g:

Gas

m:

Metal

s:

Slag

mix:

Mixture

i, j, l, k :

Generic indices

A, B, C :

Components A, B, and C

RZ:

Reaction zone

Liq:

Liquidus

T :

Temperature

IF:

Interface

ref:

Reference

ex:

Excess Gibbs energy

°:

Standrard state

p:

Pure phase

s:

Solution phase

ν :

Iteration index

n :

Time level

e:

Equilibrium

References

  1. H. Jalkanen and L. Holappa: Treatise on Process Metallurgy, vol. 3, S. Seetharaman, A. McLean, R. Guthrie and S. Sridhar, eds., Elsevier, Oxford, 2014, pp. 223–70.

  2. N. Molloy: J. Iron Steel Inst., 1970, vol. 208, pp. 943–950.

    Google Scholar 

  3. F.-R. Block, A. Masui and G. Stolzenberg: Arch. Eisenhüttenwes., 1973, vol. 44, pp. 357–361.

    Article  Google Scholar 

  4. W. Kleppe and F. Oeters: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 271–275.

    Article  Google Scholar 

  5. F. R. Cheslak, J. A. Nicholls and M. Sichel: J. Fluid Mech., 1969, vol. 36, pp. 55–63.

    Article  Google Scholar 

  6. Subagyo, G. A. Brooks, K. S. Coley and G. A. Irons: ISIJ Int., 2003, vol. 43, pp. 983–989.

    Article  Google Scholar 

  7. B.K. Rout, G. Brooks, M. Subagyo, A. Rhamdhani and Z. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3350–3361.

    Article  Google Scholar 

  8. S. C. Koria and K. W. Lange: Metall. Trans. B, 1984, vol. 15, pp. 109–116.

    Article  Google Scholar 

  9. S. C. Koria and K. W. Lange: Ironmaking Steelmaking, 1986, vol. 13, pp. 236–240.

    Google Scholar 

  10. R. C. Urquhart and W. G. Davenport: Can. Metall. Q., 1973, vol. 12, pp. 507–516.

    Article  Google Scholar 

  11. E. Schürmann, G. Mahn, J. Schoop and W. Resch: Arch. Eisenhüttenwes., 1977, vol. 48, pp. 515-519.

    Article  Google Scholar 

  12. T. Kootz, K. Behrens, H. Maas and P. Baumgarten: Stahl Eisen, 1965, vol. 85, pp. 857–865.

    Google Scholar 

  13. F. Oeters: Arch. Eisenhüttenwes., 1966, vol. 37, pp. 209–219.

    Article  Google Scholar 

  14. K. W. Lange: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 233–241.

    Article  Google Scholar 

  15. K. Koch, W. Fix and P. Valentin: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 659–663.

    Article  Google Scholar 

  16. K. Koch, W. Fix and P. Valentin: Arch. Eisenhüttenwes., 1978, vol. 49, pp. 109-114.

    Article  Google Scholar 

  17. S. Asai and I. Muchi: Trans. Iron Steel Inst. Jpn, 1970, vol. 10, pp. 250–263.

    Google Scholar 

  18. K.-C. Chou, U. B. Pal and R. G. Reddy: ISIJ Int., 1993, vol. 33, pp. 862–868.

    Article  Google Scholar 

  19. S.-Y. Kitamura, H. Shibata and N. Maruoka, Steel Res. Int., 2008, vol. 79, pp. 586–590.

    Article  Google Scholar 

  20. F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: Steel Res. Int., 2010, vol. 81, pp. 617–622.

    Article  Google Scholar 

  21. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1086–1092.

    Article  Google Scholar 

  22. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093–1101.

    Article  Google Scholar 

  23. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1102–1109.

    Article  Google Scholar 

  24. A. K. Shukla, B. Deo, S. Millman, B. Snoeijer, A. Overbosch and A. Kapilashrami: Steel Res. Int., 2010, vol. 81, pp. 940–948.

    Article  Google Scholar 

  25. Y. Lytvynyuk, J. Schenk, M. Hiebler and A. Sormann: Steel Res. Int., 2014, vol. 85, pp. 537–543.

    Article  Google Scholar 

  26. Y. Lytvynyuk, J. Schenk, M. Hiebler and A. Sormann: Steel Res. Int., 2014, vol. 85, pp. 544–563.

    Article  Google Scholar 

  27. S. Sarkar, P. Gupta, S. Basu and N. B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961–976.

    Article  Google Scholar 

  28. M. Han, Y. Li and Z. Cao, Neurocomputing, 2014, vol. 123, 415–423.

    Article  Google Scholar 

  29. M. Han and C. Liu, Appl. Soft Comput., 2014, vol. 19, pp. 430–437.

    Article  Google Scholar 

  30. H.-J. Odenthal, N. Uebber, J. Schlüter, M. Löpke, K. Morik and H. Blom: Stahl Eisen, 2014, vol. 134, pp. 62–67.

    Google Scholar 

  31. D. Laha, Y. Ren and P. N. Suganthan: Expert Syst. Appl., 2015, vol. 42, pp. 4687–4696.

    Article  Google Scholar 

  32. A. Sorsa, J. Ruuska, J. Lilja and K. Leiviskä: IFAC-PapersOnLine, 2015, vol. 48, pp. 177–182.

    Article  Google Scholar 

  33. T.W. Miller, J. Jimenez, A. Sharan, and D.A. Goldstein: The Making, Shaping and Treatment of Steels: Steelmaking and Refining, vol. 2, R.J. Fruehan, ed., The AISE Steel Foundation, Pittsburgh, 1998, pp. 475–524.

  34. C. Cicutti, M. Valdez, T. Pérez, J. Petroni, A Gómez, R. Donayo, and L. Ferro: Proceedings of the Sixth International Conference on Molten Slags, Fluxes and Salts, Stockholm-Helsinki, 2000.

  35. C. Cicutti, M. Valzed, T. Pérez, R. Donayo and J. Petroni: Latin Am. Appl. Res., 2002, vol. 32, pp. 237–240.

    Google Scholar 

  36. H. Jalkanen: Advanced Processing of Metals and Materials (Sohn International Symposium), Thermo and Physicochemical Principles: Iron and Steel Making, vol. 2, F. Kongoli and R. G. Reddy, eds., 2006, pp. 541–54.

  37. M. Järvinen, V.-V. Visuri, E.-P. Heikkinen, A. Kärnä, P. Sulasalmi, C. De Blasio and T. Fabritius: ISIJ Int., 2016, vol. 56, pp. 1543–1552.

    Article  Google Scholar 

  38. M. Ersson, L. Höglund, A. Tilliander, L. Jonsson and P. Jönsson: ISIJ Int., 2008, vol. 48, pp. 147–153.

    Article  Google Scholar 

  39. M. Ek, Q. F. Shu, J. van Boggelen and D. Sichen: Ironmaking Steelmaking, 2012, vol. 39, pp. 77–84.

    Article  Google Scholar 

  40. A. Kruskopf: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1195-1206.

    Article  Google Scholar 

  41. A. Kruskopf and S. Louhenkilpi: Proceedings of the METEC & 2nd ESTAD, Düsseldorf, Germany, 2015, p. 165.

  42. A. Kruskopf: Metall. Mater. Trans. B, 2017, vol. 48, pp. 619–631.

    Article  Google Scholar 

  43. M.H.A. Piro, Doctoral thesis, Royal Military College of Canada, 2011.

  44. M. H. A Piro, S. Simunovic, T. M. Besmann, B.J. Lewis and W.T. Thompson, Comput. Mater. Sci., 2013, vol. 67, pp. 266–272.

    Article  Google Scholar 

  45. M. H. A. Piro and S. Simunovic, CALPHAD, 2012, vol. 39, pp. 104–110.

    Article  Google Scholar 

  46. A.D. Pelton and C. W. Bale, Metall. Mater. Trans. A, 1985, vol. 17, pp. 1211–1215.

    Google Scholar 

  47. G.K. Sigworth and J.F. Elliot, Metal Sci., 1973, vol. 8, pp. 298–310.

    Article  Google Scholar 

  48. J. Miettinen, IAD—Thermodynamic Database for Iron-based alloys, Casim Consulting Oy, Espoo, 2017.

    Google Scholar 

  49. A. D. Pelton and M. Blander, Metall. Trans. B., 1986, vol. 17, pp. 805–815.

    Article  Google Scholar 

  50. C. R. Swaminathan and V. R. Voller: Int. J. Num. Meth. Heat Fluid Flow, 1993, vol. 3, pp. 233–244.

  51. J. R. Taylor and A. T. Dinsdale, CAPHAD, 1990, vol. 14, pp. 71–88

    Google Scholar 

  52. HSC Chemistry 8, version 8.1.0, Outotec Technologies, 1974–2015.

  53. M. Timucin and A.E. Morris, Metall. Trans., 1970, vol. 1, pp. 3193–3201.

    Google Scholar 

  54. Slag Atlas, 1981, Verlag Stahleisen M.B.H., Düsseldorf, Germany, p. 68.

  55. P. V. Riboud and M. Olette: Proceedings of the 7th International Conference on Vacuum Metallurgy, 1982, pp. 879–889, Iron and Steel Institute of Japan, Tokyo, Japan.

  56. S. Paul and D.N. Ghosh, Metall. Mater. Trans. B, 2007, vol. 17B, pp. 461-469.

    Google Scholar 

  57. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani and Y. Okazaki, Trans. Iron Steel Inst. Jpn, 1987, vol. 27, pp. 277–282.

    Article  Google Scholar 

  58. A. Chatterjee, N.-O. Lindfors and J.Å. Wester, Ironmaking Steelmaking, 1976, vol. 3, pp. 21–32.

    Google Scholar 

  59. K. Krishnapisharody and G.A Irons, Metall. Mater. Trans. B, 2013, vol. 44, pp. 1486–1498.

    Article  Google Scholar 

  60. A. Kärnä, M. P. Järvinen and F. Fabritius, Steel Res. Int., 2013, vol. 86, pp. 1370–1378.

    Article  Google Scholar 

  61. S. Ban-Ya, ISIJ Int., 1993, vol. 33, pp. 2–11.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the Finnish Funding Agency for Technology and Innovation (TEKES). The research was carried out within the framework of the DIMECC SIMP research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Kruskopf.

Additional information

Manuscript submitted April 28, 2017.

A correction to this article is available online at https://doi.org/10.1007/s11663-017-1114-6.

Appendix A: Initial Values for Pair Fractions

Appendix A: Initial Values for Pair Fractions

Before starting the algorithm for the solution of the pair fractions, a reasonably good initial guess should be generated. This can be done by inserting Eq. [37] into Eq. [36]. After reorganizing, this produces three equations

$$ \begin{aligned}& X_{AB}^{2} \left( {1 - K_{AB} } \right) + {\text{X}}_{AB} \left( {{\text{X}}_{AC} + {\text{X}}_{BC} - 2{\text{Y}}_{A} - 2{\text{Y}}_{B} } \right)\\ &\quad + 4{\text{Y}}_{A} {\text{Y}}_{B} - 2\left( {{\text{X}}_{BC} {\text{Y}}_{A} + {\text{X}}_{AC} {\text{Y}}_{B} } \right) + {\text{X}}_{AC} {\text{X}}_{BC} = 0, \\ & X_{AC}^{2} \left( {1 - K_{AC} } \right) + {\text{X}}_{AC} \left( {{\text{X}}_{AB} + {\text{X}}_{BC} - 2{\text{Y}}_{A} - 2{\text{Y}}_{C} } \right) \\ &\quad + 4{\text{Y}}_{A} {\text{Y}}_{C} - 2\left( {{\text{X}}_{BC} {\text{Y}}_{A} + {\text{X}}_{AB} {\text{Y}}_{C} } \right) + {\text{X}}_{AB} {\text{X}}_{BC} = 0, \\ & X_{BC}^{2} \left( {1 - K_{BC} } \right) + {\text{X}}_{BC} \left( {{\text{X}}_{AB} + {\text{X}}_{AC} - 2{\text{Y}}_{B} - 2{\text{Y}}_{C} } \right)\\ &\quad + 4{\text{Y}}_{B} {\text{Y}}_{C} - 2\left( {{\text{X}}_{AC} {\text{Y}}_{B} + {\text{X}}_{AB} {\text{Y}}_{C} } \right) + {\text{X}}_{AB} {\text{X}}_{AC} = 0, \\ \end{aligned} $$
(A1)

where \( K_{AB} = { \exp }\left( {\frac{{{{\Delta }}g_{AB} }}{RT}} \right) \), etc. These equations are only functions of (X AB , X AC , X BC ). By subtracting the second row equation from the first row equation, subtracting the third row equation from the first row equation and subtracting the second row equation from the third row equation again three equations are obtained:

$$ \begin{aligned} & X_{AB}^{2} \left( {1 - K_{AB} } \right) + 2{\text{X}}_{AB} \left( {2{\text{Y}}_{C} - 1} \right) + 4{\text{Y}}_{A} {\text{Y}}_{B} \\ &\quad - X_{AC}^{2} \left( {1 - K_{AC} } \right) - 2{\text{X}}_{AC} \left( {2{\text{Y}}_{B} - 1} \right) - 4{\text{Y}}_{A} {\text{Y}}_{C} = 0, \\ & X_{AB}^{2} \left( {1 - K_{AB} } \right) + 2{\text{X}}_{AB} \left( {2{\text{Y}}_{C} - 1} \right) + 4{\text{Y}}_{A} {\text{Y}}_{B} \\ &\quad - X_{BC}^{2} \left( {1 - K_{BC} } \right) - 2{\text{X}}_{BC} \left( {2{\text{Y}}_{A} - 1} \right) - 4{\text{Y}}_{B} {\text{Y}}_{C} = 0 \\ & X_{BC}^{2} \left( {1 - K_{BC} } \right) + 2{\text{X}}_{BC} \left( {2{\text{Y}}_{A} - 1} \right) + 4{\text{Y}}_{B} {\text{Y}}_{C} \\ &\quad - X_{AC}^{2} \left( {1 - K_{AC} } \right) - 2{\text{X}}_{AC} \left( {2{\text{Y}}_{B} - 1} \right) - 4{\text{Y}}_{A} {\text{Y}}_{C} = 0. \end{aligned} , $$
(A2)

The advantage of this manipulation is that now each equation is only dependent on two unknown pair fractions. Also in Eq. [A2] there are no terms where two pair fractions are multiplying each other like in Eq. [A1]. By applying the solution of second degree polynomial equation to the first row equation, we get

$$ \begin{aligned} {\text{X}}_{AB} & = \frac{{ - B_{AB} \pm \sqrt {B_{AB}^{2} - 4A_{AB} \left( {C_{AB} - A_{AC} X_{AC}^{2} - B_{AC} {\text{X}}_{AC} - C_{AC} } \right)} }}{{2A_{AB} }} \\ A_{AB} & = \left( {1 - K_{AB} } \right), \quad A_{AC} = \left( {1 - K_{AC} } \right) \\ B_{AB} & = 2\left({2{\text{Y}}_{C} - 1}\right), \quad B_{AC} = 2\left( {2{\text{Y}}_{B} - 1} \right) \\ C_{AB} & = 4 {\text{Y}}_{A} {\text{Y}}_{B} , \quad C_{AC} = 4 {\text{Y}}_{A} {\text{Y}}_{C} \end{aligned} $$
(A3)

where the coefficients are the terms multiplying the pair fractions in Eq. [A2]. So that X AB could have any real solutions the determinant should be either zero or positive:

$$ 4A_{AB} \left( {A_{AC} X_{AC}^{2} + B_{AC} {\text{X}}_{AC} + C_{AC} - C_{AB} } \right) + B_{AB}^{2} \ge 0. $$
(A4)

Using Eq. [A4] limits can be acquired for pair fraction X AC . In Figure 10, all possible parabolas are presented, which give limiting values for the pair fraction and have positive values for Eq. [A4] between X = [0, 1]. If product A AB A AC is negative, the parabola is opening down (Figure 10(a) through (c)). If the product is positive, the parabola is opening up (Figure 10(d) through (f)). For clarification, there are more possibilities for parabolas which give positive values when X = [0, 1], but these will not give new limits that are between [0, 1]. It is now assumed that Eq. [A4] has two solutions X 1 and X 2 as well as X 1 < X 2. If the parabola is opening down, the limiting values for X AC must be between the two solutions.

Fig. 10
figure 10

All possible parabolas from (a) to (f) for Eq. [A4] that can give limiting values for pair fraction

Since fractions can have values only between zero and one, the new limiting values for X AC can be calculated as follows:

$$ \begin{array}{*{20}c} {L_{AC} = { \hbox{max} }\left( {X_{1} ,0} \right)} & {U_{AC} = { \hbox{min} }\left( {X_{2} ,1} \right)} \\ \end{array} , $$
(A5)

where L AC is the lower limit and U AC is the upper limit. The upward opening parabola can give two ranges for limits that are between [0, 1]. This happens when 0 ≤ X 1X 2 ≤ 1. The corresponding situation is in Figure 10(d). Then the first limits are

$$ \begin{array}{*{20}c} {L_{AC}^{1} = 0} & {U_{AC}^{1} = X_{1} } \\ \end{array} , $$
(A6)

and the second limits are

$$ \begin{array}{*{20}c} {L_{AC}^{2} = X_{2} } & {U_{AC}^{2} = 1.} \\ \end{array} $$
(A7)

The correct solution has to be between the first lower and upper limits or the second lower and upper limits. Using Eq. [A2] similarly as above limits can be acquired for the three pair fractions (X AB , X AC , X BC ). Additional improvements in the initial guesses can be achieved by inserting the limiting values for X AC in Eq. [A3] and studying whether the solutions for X AB are even more limiting than the previous limits. This second step was noticed to usually decrease the limits from previous values. Finally, the initial guesses are calculated as averages of the lower and upper limits:

$$ \begin{array}{*{20}c} {X_{AC} = 0.5\left( {L_{AC} + U_{AC} } \right),} & {X_{AB} = 0.5\left( {L_{AB} + U_{AB} } \right),} & {X_{BC} = 0.5\left( {L_{BC} + U_{BC} } \right).} \\ \end{array} $$
(A8)

Initial values for the three other pair fractions can now be calculated from Eq. [37].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruskopf, A., Visuri, VV. A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace. Metall Mater Trans B 48, 3281–3300 (2017). https://doi.org/10.1007/s11663-017-1074-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1074-x

Navigation