Skip to main content
Log in

Novel Method for Predicting Hardness Distribution of Hot-Stamped Part Using FE-Simulation Coupled with Quench Factor Analysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the hot stamping of boron-alloyed steel, the mechanical properties of hot-stamped parts have been predicted by many empirical models based on Kirkaldy’s equation. Although these models are skillfully developed, there is still a need to precisely and easily predict the mechanical properties in the hot stamping process. Therefore, this study aims to suggest a novel method for the accurate prediction of the hardness distribution of hot-stamped parts by the use of finite element (FE)-simulations coupled with quench factor analysis (QFA). First, dilatometry of boron steel was performed at various cooling rates from 0.5 to 70 K/s using a dilatometer with a forced-air cooling system. The dilatometry test provided hardness data according to the cooling rates, which were used to determine the material constants (K 1 to K 5) of the QFA and the time–temperature–property diagram of boron steel. Then, FE-simulation of hot stamping was conducted to obtain the cooling curves for blanks with thicknesses of 1.2 and 1.6 mm. The extracted results from the FE-simulation were used to predict the hardness distribution of the hot-stamped parts using QFA. Finally, a hot stamping experiment was performed to verify the predicted results and to examine the effect of the blank thickness on the cooling rates of a hot-stamped part. The predicted hardnesses for the parts were in good agreement with the measured values, within a maximum error of 4.96 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Naderi, A. Saeed-Akbari, and W. Bleck: Mater. Sci. Eng. A, 2008, Vol. 487, pp. 445–55.

    Article  Google Scholar 

  2. M. Merklein and J. Lechler: J. Mater. Process. Technol., 2006, Vol. 177, pp. 452–55.

    Article  Google Scholar 

  3. A. Rajasekhar, G. M. Reddy, T. Mohandas and V. S. R. Murti: Mater. Des., 2009, Vol. 30, pp. 1612–24.

    Article  Google Scholar 

  4. H. Karbasian and A. E. Tekkaya: J. Mater. Process. Technol., 2010, Vol. 210, pp. 2103–18.

    Article  Google Scholar 

  5. P. Akerström and M. Oldenburg: J. Mater. Process. Technol., 2006 Vol. 174, pp. 399–406.

    Article  Google Scholar 

  6. J.S. Kirkaldy and D. Venugopalan: International Conference on Phase Transformations in Ferrous Alloys. 1983, pp. 125–48.

  7. D. F. Watt, L. Coon, M. Bibby, J. Goldak and C. Henwood: Acta Metall., 1988, Vol. 36, pp. 3029–35.

    Article  Google Scholar 

  8. C. Henwood, M. Bibby, J. Goldak and D. F. Watt: Acta Metall., 1988, Vol. 36, pp. 3037–46.

    Article  Google Scholar 

  9. M. V. Li, D. V. Niebuhr, L. L. Meekisho and D. G. A. Atteridge: Metall. Mater. Trans. B, 1998, Vol. 29B, pp. 661–72.

    Article  Google Scholar 

  10. H. H. Bok, M. G. Lee, E. Pavlina, F. Barlat and H. D. Kim: Int. J. Mech. Sci., 2011, Vol. 53, pp. 744–52.

    Article  Google Scholar 

  11. J. W. Evancho and J. T. Staley: Metall. Trans, 1974, Vol. 5, pp. 43–47.

    Google Scholar 

  12. L.C.F. Canale, A.C. Canale, C.E. Bate, and G.E. Totten: SAE Technical Paper. 2006, pp. 384–89.

  13. A. Z. Yazdi, S. A. Sajjadi, S. M. Zebarjad and S. M. Nezhad: J. Mater. Process. Technol., 2008, Vol. 199, pp. 124–29.

    Article  Google Scholar 

  14. M. Kianezhad and S. A. Sajjadi: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 2053–59.

    Article  Google Scholar 

  15. C.E. Bates and G.E. Totten: Heat Treat. Metals, 1992, vol. 2, pp. 45–48.

    Google Scholar 

  16. C.E. Bates: J. Heat Treat., 1988, Vol. 6, pp. 27–45.

    Article  Google Scholar 

  17. J. A. Nelder and R. Mead: Comput. J., 1965, Vol. 7, pp. 308–13.

    Article  Google Scholar 

  18. Z. W. Xing, J. Bao and Y. Y. Yang: Mater. Sci. Eng. A, 2009, Vol. 499, pp. 28–31.

    Article  Google Scholar 

  19. J. Cui, C. Lei, Z. Xing and C. Li: Mater. Sci. Eng. A, 2012, Vol. 535, pp. 241–51.

    Article  Google Scholar 

  20. A. Naganathan and L. Penter: ASM International. Hot stamping, chap. 7. 2012, pp. 133–56.

  21. G.R. Cowper and P.S. Symonds: Brown Univ. Technical Report. 1957, No. 28.

  22. D. Michael, B. Murat, and S.K. Cing-Dao: LS–Dyna Anwenderforum, Bamberg. 2005, pp. 1–10.

  23. B. Shapiro: 7th European LS–Dyna Conference. 2009.

  24. D. J. Mun, E. J. Shin, Y. W. Choi, J. S. Lee and Y. M. Koo: Mater. Sci. Eng. A, 2012, Vol. 545, pp. 214–24.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012R1A5A1048294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Min Kim.

Additional information

Manuscript submitted July 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, DH., Ko, DC. & Kim, BM. Novel Method for Predicting Hardness Distribution of Hot-Stamped Part Using FE-Simulation Coupled with Quench Factor Analysis. Metall Mater Trans B 46, 2072–2083 (2015). https://doi.org/10.1007/s11663-015-0390-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0390-2

Keywords

Navigation