Skip to main content
Log in

Thermodynamics of Arsenic in FeOx-CaO-SiO2 Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The distribution of arsenic between calcium ferrite slag and liquid silver (wt pct As in slag/ wt pct As in liquid silver) with 22 wt pct CaO and between iron silicate slag with 24 wt pct SiO2 and calcium iron silicate slags was measured at 1573 K (1300 °C) under a controlled CO-CO2-Ar atmosphere. For the calcium ferrite slags, a broad range of oxygen partial pressure (10–11 to 0.21 atm) was covered, whereas for the silicate slags, the oxygen partial pressure was varied from 10–9 to 3.1 × 10–7 atm. The measured relations between the distribution ratio of As and the oxygen partial pressure indicates that the oxidation state of arsenic in these slags is predominantly As3+ or AsO1.5. The measured distribution ratio of arsenic between the calcium ferrite slag and the liquid silver was about an order of magnitude higher than that of the iron silicate slag. In addition, an increasing concentration of SiO2 in the calcium-ferrite-based melts resulted in decreases in the distribution of arsenic into the slag. Through the use of measured equilibrium data on the arsenic content of the metal and slag in conjunction with the composition dependent on the activity of arsenic in the metal, the activity of AsO1.5 in the slags was deduced. These activity data on AsO1.5 show a negative deviation from the ideal behavior in these slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Nagamori, P.J. Mackey, and P. Tarassoff: Metall. Trans. B, 1975, vol. 6B, pp. 295-01.

    Article  CAS  ADS  Google Scholar 

  2. M. Kashima, M. Eguchi, and A. Yazawa: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 152-58.

    CAS  Google Scholar 

  3. M. Kashima, Y. Nishikawa, M. Eguchi, and A. Yazawa: J. Jpn. Inst. Met., 1980, vol. 96, pp. 907-11.

    CAS  Google Scholar 

  4. D.C. Lynch and K.W. Schwartze: Can. Metall. Q., 1981, vol. 20, pp. 269-78.

    CAS  Google Scholar 

  5. D.M. Dabbs and D.C. Lynch: Advances in Sulfide Smelting, vol. 1, The Metallurgical Society of AIME, Warrendale, PA, 1983, pp. 143-69.

    Google Scholar 

  6. I. Jimbo, S. Goto, and O. Ogawa: Metall. Trans. B, 1984, vol. 15B, pp. 535-41.

    Article  CAS  ADS  Google Scholar 

  7. Y. Takeda, S. Ishiwata, and A. Yazawa: Trans. Jpn. Inst. Met., 1983, vol. 24, no. 7, pp. 518-28.

    CAS  Google Scholar 

  8. H. Eerola, K. Jylha, and P. Taskinen: Trans. Inst. Min. Metall. C, 1984, vol. 93, pp. C193-99.

    Google Scholar 

  9. H.G. Kim and H.Y. Sohn: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 583-90.

    Article  CAS  Google Scholar 

  10. M. Somerville: Masters Thesis, University of Melbourne, Melbourne, Australia, 2000.

  11. M. Hino and T. Azakami: Metall. Rev. MMIJ, 1986, vol. 3, no. 1, pp. 61-78.

    Google Scholar 

  12. O. Knacke, O. Kubachewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1991.

    Google Scholar 

  13. M.D. Johnston, S. Jahansshahi, and F.J. Lincoln: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 433-42.

    Article  CAS  ADS  Google Scholar 

  14. A. Yazawa and Y. Takeda: Trans. Jpn. Inst. Met., 1982, vol. 23, no. 6, pp. 328-33.

    CAS  Google Scholar 

  15. Australian Standards 1038, Part 14.1: Analysis of Coal Ash, Coke Ash and Mineral Matter, 1981.

  16. R.S. Young: Chemical Analysis in Extractive Metallurgy, Charles Griffin and Company Limited, London, UK, 1971, pp. 172-87.

    Google Scholar 

  17. Y. Takeda, S. Nakazawa, and A. Yazawa: Can. Metall. Q., 1980, vol. 19, pp. 297-05.

    CAS  Google Scholar 

  18. A. Muan: Trans. AIME, 1955, vol. 203, pp. 965-77.

    Google Scholar 

  19. H.M. Henao, F. Kongoli, and K. Itagaki: Mater. Trans. JIM, 2005, vol. 46, no. 4, pp. 812-19.

    Article  CAS  Google Scholar 

  20. E.J. Michal and R. Schuhmann: J. Met., 1952, vol. 4, pp. 723-28.

    CAS  Google Scholar 

  21. L. Yang: Ph.D. Dissertation, University of Newcastle, Sydney, Australia, 1994.

  22. S. Sun and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 937-44.

    Article  CAS  Google Scholar 

  23. B. Pei: Scand. J. Metall., 1993, vol. 22, pp. 24-29.

    CAS  Google Scholar 

  24. N.A. Gocken: Bull Alloy Phase Diagrams, 1989, vol. 10, pp. 11-22.

    Article  Google Scholar 

  25. I. Ansara and B. Sundman: Computer Handling and Dissemination of Data, ed., P.S. Glaser, Elsevier Science Ltd., Atlanta, GA, 1986, pp. 154-58.

  26. G. Roghani, Y. Takeda, and K. Itagaki: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 705-12.

    Article  CAS  ADS  Google Scholar 

  27. G. Roghani, J.C. Font, M. Hino, and K. Itagaki: Mater. Trans. JIM, 1996, vol. 37, pp. 1574-79.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Roy Hampson and Mr. Rowan Davidson for carrying out the experimental work. Financial support for this work was provided by CSIRO Process Science and Engineering and the former GK Williams Cooperative Research Centre for Extractive Metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Chen.

Additional information

Manuscript submitted July 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Jahanshahi, S. Thermodynamics of Arsenic in FeOx-CaO-SiO2 Slags. Metall Mater Trans B 41, 1166–1174 (2010). https://doi.org/10.1007/s11663-010-9430-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9430-0

Keywords

Navigation