Skip to main content
Log in

Evolution Behavior of Non-metallic Inclusions in High-Al or Si-Alloyed Steel Reacting With CaO–Al2O3–FeO–SiO2–MgO Slag

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of the reaction between alloy elements and slag on the evolution behavior of non-metallic inclusions in high-Al or Si-alloyed steel melts was investigated at 1873 K (1600 °C). Aluminum (1.5 mass pct) added to the molten steel produces an alumina-rich inclusion by reaction with oxygen, and it reduces FeO by the interfacial reaction with the CaO–Al2O3–FeO–SiO2–MgO slag, resulting in an increase of the alumina content of the slag. On the other hand, silicon (4.0 mass pct) added to the molten steel increases the silica content of the slag by the interfacial reactions with the slag and causing aluminum pick-up from the liquid slag into the molten steel, which changed the existing silica-rich inclusion into aluminum-rich inclusions. The addition of each of the two alloying elements produced alumina-rich inclusions, and the two series of existing alumina inclusions were modified into MgAl2O4 spinel inclusions by picking up magnesium from the slag into the molten steel. Through a population density function (PDF) analysis of inclusion particles, we confirmed that inclusion growth occurred by diffusion of magnesium and aluminum in steel with 1.5 pct Al or 4.0 pct Si. The supersaturation degree for alumina inclusions in the 1.5 pct Al-added steel and 4.0 pct Si-added steel continued to decrease as the reaction time increased. As a result, dendritic or spherical alumina inclusions were observed in both series at 1 minute of alloying, and small, independently present polygonal-shaped MgAl2O4 spinel inclusions were mainly observed at 30 minutes of alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, and G.L. Chen: J. Alloys Compd., 2010, vol. 491, pp. 268–70. https://doi.org/10.1016/J.Jallcom.2009.10.118.

    Article  CAS  Google Scholar 

  2. D.S. Petrovic, B. Arh, F. Tehovnik, and M. Pirnat: ISIJ Int., 2011, vol. 51, pp. 2069–75.

    Article  Google Scholar 

  3. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, 2nd ed. Wiley, New York, 2009.

    Google Scholar 

  4. J.H. Park: Calphad, 2011, vol. 35, pp. 455–62.

    Article  CAS  Google Scholar 

  5. J.S. Park, C. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550–64. https://doi.org/10.1007/S11663-012-9734-3.

    Article  Google Scholar 

  6. M.H. Lee, R. Kim, and J.H. Park: Sci. Rep., 2019, vol. 9, p. 6369. https://doi.org/10.1038/S41598-019-42879-3.

    Article  Google Scholar 

  7. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46. https://doi.org/10.2355/Isijinternational.50.1333.

    Article  CAS  Google Scholar 

  8. K. Sasai and Y. Mizukami: ISIJ Int., 1994, vol. 34, pp. 802–09. https://doi.org/10.2355/Isijinternational.34.802.

    Article  CAS  Google Scholar 

  9. F. Li, H. Li, S. Zheng, J. You, K. Han, and Q. Zhai: Materials, 2017, vol. 10, p. 1206. https://doi.org/10.3390/Ma10101206.

    Article  Google Scholar 

  10. Y. Liu, C. Zhu, L. Huang, X. Chen, and G. Li: JOM, 2022, vol. 74, pp. 2645–55. https://doi.org/10.1007/S11837-022-05333-W.

    Article  CAS  Google Scholar 

  11. Y. Sun, Y. Zeng, R. Xu, and K. Cai: Int. J. Min. Metall. Mater., 2014, vol. 21, pp. 1068–76. https://doi.org/10.1007/S12613-014-1011-9.

    Article  CAS  Google Scholar 

  12. H.J. Jung and J.R. Kim: J. Magn. Magn. Mater., 2014, vol. 353, pp. 76–81. https://doi.org/10.1016/J.Jmmm.2013.10.004.

    Article  CAS  Google Scholar 

  13. Y. Oda, Y. Tanaka, A. Chino, and K. Yamada: J. Magn. Magn. Mater., 2003, vol. 254–255, pp. 361–63. https://doi.org/10.1016/S0304-8853(02)00866-1.

    Article  Google Scholar 

  14. P. Ghosh, R.R. Chromik, A.M. Knight, and S.G. Wakade: J. Magn. Magn. Mater., 2014, vol. 356, pp. 42–51. https://doi.org/10.1016/J.Jmmm.2013.12.052.

    Article  CAS  Google Scholar 

  15. H.G. Kang, K.M. Lee, M.Y. Huh, J.S. Kim, J.T. Park, and O. Engler: J. Magn. Magn. Mater., 2011, vol. 323, pp. 2248–53. https://doi.org/10.1016/J.Jmmm.2011.03.041.

    Article  CAS  Google Scholar 

  16. J. Zhang and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1629–38. https://doi.org/10.2355/Isijinternational.44.1629.

    Article  CAS  Google Scholar 

  17. M.A. Van Ende, M. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2009, vol. 36, pp. 201–08. https://doi.org/10.1179/174328109x401550.

    Article  Google Scholar 

  18. M.A. Van Ende, M. Guo, E. Zinngrebe, B. Blanpain, and I.-H. Jung: ISIJ Int., 2013, vol. 53, pp. 1974–82. https://doi.org/10.2355/Isijinternational.53.1974.

    Article  Google Scholar 

  19. M.D. Seo, J.W. Cho, K.C. Kim, and S.H. Kim: ISIJ Int., 2014, vol. 54, pp. 475–81. https://doi.org/10.2355/Isijinternational.54.475.

    Article  CAS  Google Scholar 

  20. S.P.T. Piva and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 6–16. https://doi.org/10.1007/S11663-020-02017-1.

    Article  Google Scholar 

  21. Y. Kwon, J. Choi, and S. Sridhar: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 814–24. https://doi.org/10.1007/S11663-011-9523-4.

    Article  Google Scholar 

  22. Q. Ren, W. Yang, L. Cheng, L. Zhang, and A.N. Conejo: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 200–12. https://doi.org/10.1007/S11663-019-01739-1.

    Article  Google Scholar 

  23. Q. Ren, L. Zhang, and W. Yang: Steel Res. Int., 2018, vol. 89, p. 1800047. https://doi.org/10.1002/Srin.201800047.

    Article  Google Scholar 

  24. Q. Ren, Z. Hu, L. Cheng, X. Kang, Y. Cheng, and L. Zhang: Steel Res. Int., 2022, vol. 93, p. 2200212. https://doi.org/10.1002/Srin.202200212.

    Article  CAS  Google Scholar 

  25. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3225–30. https://doi.org/10.1007/S11663-016-0789-4.

    Article  Google Scholar 

  26. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85, pp. 1303–09. https://doi.org/10.1002/Srin.201300203.

    Article  CAS  Google Scholar 

  27. S.K. Kwon, J.S. Park, and J.H. Park: ISIJ Int., 2015, vol. 55, pp. 2589–96. https://doi.org/10.2355/Isijinternational.Isijint-2015-125.

    Article  CAS  Google Scholar 

  28. N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, and J.H. Park: J. Alloys Compd., 2018, vol. 763, pp. 546–57. https://doi.org/10.1016/J.Jallcom.2018.05.339.

    Article  CAS  Google Scholar 

  29. Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang: J. Am. Ceram. Soc., 2020, vol. 103, pp. 2210–24. https://doi.org/10.1111/Jace.16879.

    Article  CAS  Google Scholar 

  30. T.S. Kim, S.B. Lee, and J.H. Park: ISIJ Int., 2021, vol. 61, pp. 2998–3007. https://doi.org/10.2355/Isijinternational.Isijint-2021-167.

    Article  CAS  Google Scholar 

  31. B.V. Patil and U.B. Pal: Metall. Trans. B, 1987, vol. 18B, pp. 583–89. https://doi.org/10.1007/Bf02654271.

    Article  CAS  Google Scholar 

  32. Y. Ehara, S. Yokoyama, and M. Kawakami: Tetsu-To-Hagane, 2007, vol. 93, pp. 475–82. https://doi.org/10.2355/Tetsutohagane.93.475.

    Article  CAS  Google Scholar 

  33. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791–97. https://doi.org/10.1007/S11663-006-0061-4.

    Article  CAS  Google Scholar 

  34. J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657–63. https://doi.org/10.1007/S11663-007-9066-X.

    Article  CAS  Google Scholar 

  35. M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48, pp. 885–90. https://doi.org/10.2355/Isijinternational.48.885.

    Article  CAS  Google Scholar 

  36. Y.B. Kang and S.H. Jung: ISIJ Int., 2018, vol. 58, pp. 1371–82. https://doi.org/10.2355/Isijinternational.Isijint-2018-198.

    Article  CAS  Google Scholar 

  37. Crystal Size Distributions (Csd) Correction Program (Ver. 1.5), Csd Corrections.Exe. https://Csd-Corrections.Software.Informer.Com/1.5/

  38. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33–41. https://doi.org/10.2355/Isijinternational.46.33.

    Article  CAS  Google Scholar 

  39. R. Dekkers, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 161–71. https://doi.org/10.1007/S11663-003-0003-3.

    Article  CAS  Google Scholar 

  40. I. Sunagawa: Morphology of Minerals, in Morphology of Crystals, Part B, Terra Science Publishing, Tokyo, 1988, pp. 509–87.

    Google Scholar 

  41. Y.M. Cho, D.J. Lee, H.J. Cho, W.Y. Kim, S.W. Han, and Y.B. Kang: ISIJ Int., 2022, vol. 62, pp. 1705–14. https://doi.org/10.2355/Isijinternational.Isijint-2022-059.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Competency Development Program for Industry Specialists from the Korea Institute for Advancement of Technology (KIAT, Grant Number P0002019) and the Korea Evaluation Institute of Industrial Technology (KEIT, Grant Number 20009956), funded by the Ministry of Trade, Industry and Energy (MOTIE), Korea. Also, the authors express their appreciation to the anonymous reviewers' fruitful comments to improve the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.W., Kim, T.S., Park, G.H. et al. Evolution Behavior of Non-metallic Inclusions in High-Al or Si-Alloyed Steel Reacting With CaO–Al2O3–FeO–SiO2–MgO Slag. Metall Mater Trans B 55, 446–460 (2024). https://doi.org/10.1007/s11663-023-02969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02969-0

Navigation