Skip to main content
Log in

Channel segregation during solidification and the effects of an alternating traveling magnetic field

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The model proposed by Felicelli, Heinrich, and Poirier is used to simulate the solidification of a small two-dimensional domain of Pb-10 wt pct Sn alloy in the presence of electromagnetic stirring by different traveling fields, with or without gravity. Results show (a) enrichment of the bulk liquid by mush solute draining; (b) spontaneous formation of vertical channels, acting as ducts, significantly modified by the electromagnetic flow; and possibly (c) a finer periodic structure of subchannels. Only the last feature is sensitive to the mesh size and permeability value. Scaling analysis is used to balance Darcy, buoyancy, and electromagnetic phenomena. Attention is focused on the gradient zone at the solidification front. Electromagnetic forces can change the flow structure in the bulk liquid. In this way, they modify the pressure differences at the solidification front, changing the channel segregation pattern. Although they cannot eliminate the channels, they can control their positions and partly prevent the unsteadiness of buoyancy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Giamei and B.H. Kear: Metall. Trans., 1970, vol. 1, pp. 2185–92.

    CAS  Google Scholar 

  2. A. Hultgren: Scand. J. Metall., 1973, vol. 2, pp. 217–27.

    CAS  Google Scholar 

  3. L.H. Shaw, J. Beech, and R.H. Hickley: Ironmaking and Steelmaking, 1986, vol. 13, pp. 154–60.

    CAS  Google Scholar 

  4. T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081–94.

    Google Scholar 

  5. P. Auburtin, S.L. Cockroft, and A. Mitchell: in Solidification Processing 1997, J. Beech and H. Jones, eds., The University of Sheffield, Sheffield, 1997, pp. 336–40.

    Google Scholar 

  6. R.J. McDonald and J.D. Hunt: Trans. TMS-AIME, 1969, vol. 245, pp. 1993–97.

    CAS  Google Scholar 

  7. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    CAS  Google Scholar 

  8. N. Streat and F. Weinberg: Metall. Trans., 1974, vol. 5, pp. 2539–48.

    CAS  Google Scholar 

  9. S.N. Tewari and R. Shah: Metall. Trans. A, 1992, vol. 23A, pp. 3383–92.

    CAS  Google Scholar 

  10. M.I. Bergman, D.R. Fearn, J. Bloxham, and M.C. Shannon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 859–66.

    Article  CAS  Google Scholar 

  11. M.C. Flemings and G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  12. P.K. Sung, D.R. Poirier, and S.D. Fellicelli: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 202–07.

    Article  CAS  Google Scholar 

  13. S.D. Felicelli, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 847–55.

    CAS  Google Scholar 

  14. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  15. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    CAS  Google Scholar 

  16. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Num. Heat Transfer B, 1993, vol. 23, pp. 461–81.

    CAS  Google Scholar 

  17. J. Ni and C. Beckermann: Metall. Trans. B, 1990, vol. 22B, pp. 349–61.

    Google Scholar 

  18. M.S. Bhat, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1049–56.

    CAS  Google Scholar 

  19. N. Ahmad, H. Combeau, J.L. Desbiolles, T. Talanti, G. Lesoult, J. Rappaz, M. Rappaz, and C. Stomp: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 617–30.

    Article  CAS  Google Scholar 

  20. M. Dubke, K.-H. Tacke, K.-H. Spitzer, and K. Schwerdtfeger: Metall. Trans. B, 1988, vol. 19B, pp. 581–93.

    CAS  Google Scholar 

  21. P.J. Prescott and F.P. Incropera: J. Heat Transfer, 1995, vol. 117, pp. 716–24.

    CAS  Google Scholar 

  22. M.J.M. Krane and F.P. Incropera: Int. J. Heat Mass Transfer, 1996, vol. 39, pp. 3567–79.

    Article  CAS  Google Scholar 

  23. C. Beckermann, J.P. Gu, and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2545–55.

    Article  Google Scholar 

  24. A.A. Tzavaras and H.D. Brody: J. Met., 1984, Mar., pp. 31–37.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, M., Du Terrail, Y., Durand, F. et al. Channel segregation during solidification and the effects of an alternating traveling magnetic field. Metall Mater Trans B 35, 743–754 (2004). https://doi.org/10.1007/s11663-004-0014-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0014-8

Keywords

Navigation