Skip to main content
Log in

Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Micro-macrosegregation calculations have been performed for a rectangular cavity containing either a Pb-48 wt pct Sn alloy or a Sn-5 wt pct Pb alloy. The numerical results calculated with a finite volume method (FVM) and a finite element method (FEM) are compared with experimental results previously obtained by Hebditch and Hunt. The two methods are based on the same average conservation equations governing heat and mass transfer and the same assumptions: lever rule, equal and constant density of the solid and liquid phases (except in the buoyancy term), permeability of the mushy zone given by the Carman-Kozeny relation, and no transport of the solid phase. Although the same parameters are used in both calculations, small differences are observed as a result of the different formulations. In particular, the instabilities appearing in the mushy zone (channels) of the Sn-5 wt pct Pb alloy are more pronounced with the FVM formulation as compared with FEM, whereas the opposite trend is observed for the Pb-48 wt pct Sn alloy. Nevertheless, the final segregation maps at the end of solidification compare fairly well with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Hebditch and J.D. Hunt: Metall. Trans., 1974, vol. 5, pp. 1557–64.

    CAS  Google Scholar 

  2. V.R. Voller and S. Sundarraj: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 1009–18.

    Article  CAS  Google Scholar 

  3. P. Nandapurkar, D.R. Poirier, J.C. Heinrich, and S. Felicelli: Metall. Trans. B, 1989, vol. 20B, pp. 711–21.

    CAS  Google Scholar 

  4. J.C. Heinrich, S. Felicelli, P. Nandapurkar, and D.R. Poirier: Metall. Trans. B, 1989, vol. 20B, pp. 883–91.

    CAS  Google Scholar 

  5. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171–87.

    Article  CAS  Google Scholar 

  6. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  7. S.N. Tewari and R. Shah: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1353–62.

    CAS  Google Scholar 

  8. K. Miyazawa and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1981, vol. 52, pp. 415.

    CAS  Google Scholar 

  9. G. Lesoult and S. Sella: in Non Linear Phenomena in Materials Science, G. Martin and L.P. Kubin, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1988, pp. 167–78

    Google Scholar 

  10. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64, pp. 2765–83, and pp. 2784–95.

    CAS  Google Scholar 

  11. J. Jang and A. Hellawell: Ironmaking and Steelmaking, 1991, vol. 18, pp. 267–74.

    CAS  Google Scholar 

  12. J. Jang and A. Hellawell: Ironmaking and Steelmaking, 1991, vol. 18, pp. 275–83.

    CAS  Google Scholar 

  13. H. Kato and J.P. Cahoon: Metall. Trans. A, 1985, vol. 16A, pp. 579–87.

    CAS  Google Scholar 

  14. M. Schneider and C. Beckermann: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 3455–73.

    Article  CAS  Google Scholar 

  15. E. Hang, A. Mo, and H.J. Tevik: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 1553–63.

    Article  Google Scholar 

  16. H.W. Huang, J.C. Heinrich, and D.R. Poirier: Model. Simul. Mater. Sci. Eng., 1996, vol. 4, pp. 245–59.

    Article  CAS  Google Scholar 

  17. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    CAS  Google Scholar 

  18. H. Combeau and G. Lesoult: 6th Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, Palm Coast, FL, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale PA, 1993, pp. 201–08.

    Google Scholar 

  19. P.J. Prescott and F.P. Incropera: Metall. Trans. B, 1991, vol. 22B, pp. 529–40.

    CAS  Google Scholar 

  20. W.D. Bennon and F.P. Incropera: Num. Heat Transfer, 1988, vol. 13, pp. 277–96.

    Google Scholar 

  21. I. Ohnaka: Proc. Conf. “State of the Art of Computer Simulation of Casting and Solidification Processes,” E-MRS 14, H. Fredriksson, ed., Les Editions de Physique, Les Ulis, France, 1986, pp. 211–23.

    Google Scholar 

  22. M. Rappaz and V. Voller: Metall. Trans. A, 1990, vol. 21A, pp. 749–53.

    CAS  Google Scholar 

  23. S. Ganesan and D.R. Poirier: Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    CAS  Google Scholar 

  24. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan: Metall. Trans. B, 1991, vol. 22B, pp. 889–900.

    CAS  Google Scholar 

  25. C. Prakash and V. Voller: Num. Heat Transfer, 1989, part B, vol. 15, pp. 171–89.

    Google Scholar 

  26. H. Combeau, F. Roch, J.C. Chevrier, I. Poitrault, and G. Lesoult: Advanced Methods in Heat Transfer, Southampton, Great Britain, July 17 1990, L.C. Wrobel, ed., Springer-Verlag, New York, NY, 1990, vol. 3, pp. 79–90.

    Google Scholar 

  27. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  28. X. Zeng and A. Faghri: Num. Heat Transfer, 1994, part B, vol. 25, pp. 467–80.

    Google Scholar 

  29. M. Reza Aboutalebi, M. Hassan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.

    Google Scholar 

  30. D. Xu and Q. Li: Num. Heat Transfer, 1991, part A, vol. 20, pp. 181–201.

    Google Scholar 

  31. A. Mo, T. Rusten, H.J. Thevik, B.R. Henriksen, and E.K. Jensen: 126th TMS Annual Meeting, Orlando, FL, 1997, TMS, Warrendale, PA, 1997, pp. 667–74.

    Google Scholar 

  32. S.K. Sinha, T. Sundarajan, and V.K. Garg: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 2349–58.

    Article  CAS  Google Scholar 

  33. M.J.M. Krane and F.P. Incropera: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2329–40.

    CAS  Google Scholar 

  34. A. Mo: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 4335–40.

    Article  CAS  Google Scholar 

  35. H.J. Thevik and A. Mo: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 2055–65.

    Article  CAS  Google Scholar 

  36. D. Xu, Q. Li, and R.D. Pehlke: AFS Trans., 1991, vol. 103, pp. 737–45.

    Google Scholar 

  37. H. Shahani, G. Amberg, and H. Fredriksson: Metall. Trans. A, 1992, vol. 23A, pp. 2301–11.

    CAS  Google Scholar 

  38. M.C. Flemings and G.E. Nereo: Trans. TMS-AIME, 1968, vol. 242, pp. 50–55.

    CAS  Google Scholar 

  39. I. Vannier, H. Combeau, and G. Lesoult: Mater. Sci. Eng., 1993, vol. A173, pp. 317–21.

    CAS  Google Scholar 

  40. I. Vannier: Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1995.

    Google Scholar 

  41. P. Thévoz, M. Rappaz, and J.-L. Desbiolles: Light Metals, C.M. Bickert, ed. TMS, Warrendale, PA, pp. 975–84.

  42. N. Ahmad: Ph.D. Thesis No 1349, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1995.

    Google Scholar 

  43. A.E. Scheidegger: The Physics of Flow through Porous Media, 3rd ed., University of Toronto Press, Toronto, 1974, p. 141.

    Google Scholar 

  44. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C., 1980.

    Google Scholar 

  45. J.P. Van Doormaal and G.D. Raithby: Num. Heat Transfer, 1984, vol. 7, pp. 147–63.

    Google Scholar 

  46. J.L. Desbiolles, M. Rappaz, J.J. Droux, and J. Rappaz: Proc. E-MRS Conf., H. Fredriksson, ed., Les Editions de Physique, Paris, 1986, pp. 49–55.

    Google Scholar 

  47. H. Combeau, J.-M. Drezet, A. Mo, and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2314–27.

    CAS  Google Scholar 

  48. G. De Vahl Davis and I.P. Jones: Int. J. Num. Methods in Fluids, 1983, vol. 3, pp. 227–48.

    Article  Google Scholar 

  49. A.N. Brooks and T.J.R. Hughes: Comp. Meths. Appl. Mech. Eng., 1982, vol. 32, pp. 199–259.

    Article  Google Scholar 

  50. F. Thomasset: Implementation of Finite Element Methods for Navier-Stokes equations, Springer-Verlag, New York, NY, 1981, p. 81.

    Google Scholar 

  51. H. Fredriksson and S.O. Nilsson: Metall. Trans. B, 1978, vol. 9B, pp. 111–20.

    CAS  Google Scholar 

  52. W. Kurz and D.J. Fischer: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, N., Rappaz, J., Desbiolles, J.L. et al. Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments. Metall Mater Trans A 29, 617–630 (1998). https://doi.org/10.1007/s11661-998-0143-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0143-9

Keywords

Navigation