Skip to main content
Log in

Development of a freckle predictor via rayleigh number method for single-crystal nickel-base superalloy castings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A Rayleigh number based criterion is developed for predicting the formation of freckles in Ni-base superalloy castings. This criterion relies on finding the maximum local Rayleigh number in the mush, where the ratio of the driving buoyancy force to the retarding frictional force is the largest. A critical Rayleigh number for freckle formation of approximately 0.25 is found from available experimental data on directional solidification of a Ni-base superalloy. If the Rayleigh number in a superalloy casting is below this critical value, freckles are not expected to form. Full numerical simulations of freckling in directional solidification of superalloys are conducted for a large variety of casting conditions, alloy compositions, and inclinations of the system with respect to gravity. For the vertical cases, the Rayleigh numbers at the starting points of the predicted freckles are in good agreement with the critical value established from the experiments. The simulations confirm that the same critical Rayleigh number applies to different superalloys. The simulations for inclined domains show that even a small amount of inclination (less than 10 deg) significantly lowers the critical Rayleigh number and moves the freckles to the side wall of the casting, where the mushy zone has advanced the most relative to gravity. In application of the Rayleigh number criterion to complex-shaped superalloy castings, the absence of freckles near upper and lower boundaries and in sections of insufficient cross-sectional area or height needs to be taken into account as well. The criterion can be used to study the tradeoffs between different superalloy compositions, applied temperature gradients, and casting speeds. Additional experiments, in particular for other superalloys and for a range of inclinations, are desirable to confirm the critical Rayleigh numbers found in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. McDonald and J.D. Hunt: TMS-AIME, 1969, vol. 245, pp. 1993–97.

    CAS  Google Scholar 

  2. A.F. Giamei and B.H. Kear: Metall. Trans., 1970, vol. 1, pp. 2185–92.

    CAS  Google Scholar 

  3. M.G. Worster: Ann. Rev. Fluid Mech., 1997, vol. 29, pp. 91–122.

    Article  Google Scholar 

  4. A. Hellawell, J.R. Sarazin, and R.S. Steube: Phil. Trans. R. Soc. London A, 1993, vol. 345, pp. 507–44.

    CAS  Google Scholar 

  5. T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081–94.

    Google Scholar 

  6. J.P. Gu, C. Beckermann, and A.F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1533–42.

    CAS  Google Scholar 

  7. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193–2204.

    CAS  Google Scholar 

  8. A.K. Sample and A. Hellawell: Metall. Trans. A, 1984, vol. 15A, pp. 2163–73.

    CAS  Google Scholar 

  9. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    CAS  Google Scholar 

  10. S.N. Tewari and R. Shah: Metall. Trans. A, 1992, vol. 23A, pp. 3383–92.

    CAS  Google Scholar 

  11. S.N. Tewari, R. Shah, and M.A. Chopra: Metall. Trans. A, 1993, vol. 24A, pp. 1661–69.

    CAS  Google Scholar 

  12. S.N. Tewari and R. Shah: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1353–62.

    CAS  Google Scholar 

  13. M.I. Bergman, D.R. Fearn, J. Bloxham, and M.C. Shannon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 859–66.

    Article  CAS  Google Scholar 

  14. P. Auburtin, S.L. Cockcroft, and A. Mitchell: in Solidification Processing 1997, J. Beech and H. Jones, eds., The University of Sheffield, Sheffield, United Kingdom, 1997, pp. 336–40.

    Google Scholar 

  15. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1998.

    Google Scholar 

  16. P.N. Quested and M. McLean: Mater. Sci. Eng., 1984, vol. 65, pp. 171–84.

    Article  CAS  Google Scholar 

  17. G.K. Bouse and J.R. Mihalisin: in Superalloys, Supercomposites and Superceramics, J.K. Tien and T. Caulfield, eds., Academic Press, Boston, MA, 1988, pp. 99–148.

    Google Scholar 

  18. S. Tait and C. Jaupart: J. Geophys. Res., 1992, vol. 97, pp. 6735–56.

    Article  CAS  Google Scholar 

  19. A.C. Fowler: IMA J. Appl. Math., 1985, vol. 35, pp. 159–74.

    Article  Google Scholar 

  20. P. Nandapurkar, D.R. Poirier, J.C. Heinrich, and S. Felicelli: Metall. Trans. B, 1989, vol. 20B, pp. 711–21.

    CAS  Google Scholar 

  21. M.G. Worster: J. Fluid Mech., 1992, vol. 237, pp. 649–69.

    Article  CAS  Google Scholar 

  22. G. Amberg and G.M. Homsy: J. Fluid Mech., 1993, vol. 252, pp. 79–98.

    Article  CAS  Google Scholar 

  23. D.M. Anderson and M.G. Worster: J. Fluid Mech., 1995, vol. 302, pp. 307–31.

    Article  CAS  Google Scholar 

  24. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  25. C. Beckermann and C.Y. Wang: in Annual Review of Heat Transfer VI, C.L. Tien, ed., Begell House, New York, NY, 1995, vol. 6, pp. 115–98.

    Google Scholar 

  26. P.J. Prescott and F.P. Incropera: in Advances in Heat Transfer, D. Poulikakos, ed., Academic Press, San Diego, CA, 1996, pp. 231–338.

    Google Scholar 

  27. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1517–31.

    CAS  Google Scholar 

  28. W.J. Boettinger, U.R. Kattner, S.R. Coriell, Y.A. Chang, and B.A. Mueller: in Modeling of Casting, Welding and Advanced Solidification Process VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 649–56.

    Google Scholar 

  29. S.D. Felicelli, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 847–55.

    Google Scholar 

  30. B. Mueller: Howmet Corporation, Whitehall, MI, personal communication, 1995.

  31. M.C. Bhat: Ph.D. Thesis, The University of Arizona, Tucson, AR, 1995.

    Google Scholar 

  32. J.P. Gu and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1357–66.

    CAS  Google Scholar 

  33. T.G. Chart, J.F. Counsell, W. Slough, and P.J. Spencer: Int. Met. Rev., 1975, vol. 20, p. 57.

    CAS  Google Scholar 

  34. U.R. Kattner, W.J. Boettinger, and S.R. Coriell: Z. Metallkd., 1996, vol. 87, pp. 522–28.

    CAS  Google Scholar 

  35. T. Iida and R.I.L. Guthrie: in The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1993, pp. 70–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckermann, C., Gu, J.P. & Boettinger, W.J. Development of a freckle predictor via rayleigh number method for single-crystal nickel-base superalloy castings. Metall Mater Trans A 31, 2545–2557 (2000). https://doi.org/10.1007/s11661-000-0199-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0199-7

Keywords

Navigation