Skip to main content
Log in

Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10−4 to 10−2 s−1. Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10−4 s−1 demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara: J. Nucl. Mater., 1993, vol. 204, pp. 65–73.

    Article  CAS  Google Scholar 

  2. C. Zakine, C. Prioul, and D. François: Mater. Sci. Eng. A, 1996, vol. 219, pp. 102–8.

    Article  Google Scholar 

  3. M.J. Alinger, G.R. Odette, and G.E. Lucas: J. Nucl. Mater., 2002, vol. 311, pp. 484–9.

    Article  Google Scholar 

  4. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara: J. Nucl. Mater., 2002, vol. 307–311, pp. 773–7.

    Article  Google Scholar 

  5. D.T. Hoelzer, J. Bentley, M. A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger: J. Nucl. Mater., 2007, vol. 367–370, pp. 166–72.

    Article  Google Scholar 

  6. A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen: Nat. Mater., 2011, vol. 10, pp. 922–6.

    Article  CAS  Google Scholar 

  7. G. Sundararajan, R. Vijay, and A.V. Reddy: Curr. Sci., 2013, vol. 105, pp. 1100-6.

  8. Dadé, J. Malaplate, J. Garnier, F. Barcelo, F. Mompiou, P. Wident, and A. Deschamps: Materialia, 2018, vol. 4, pp. 585–94.

    Article  Google Scholar 

  9. C.P. Massey, D.T. Hoelzer, P.D. Edmondson, A. Kini, B. Gault, K.A. Terrani, and S.J. Zinkle: Scr. Mater., 2019, vol. 170, pp. 134–9.

    Article  CAS  Google Scholar 

  10. J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, and T. Shanmugasundaram: Acta Mater., 2011, vol. 59, pp. 1300–8.

    Article  CAS  Google Scholar 

  11. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, and D. Sturm: Scr. Mater., 2009, vol. 61, pp. 793–6.

    Article  CAS  Google Scholar 

  12. Y. Li, T. Nagasaka, T. Muroga, A. Kimura, and S. Ukai: Fusion Eng. Des., 2011, vol. 86, pp. 2495–9.

    Article  CAS  Google Scholar 

  13. F. Siska, L. Stratil, H. Hadraba, S. Fintova, I. Kubena, V. Hornik, R. Husak, D. Bartkova, and T. Zalezak: Mater. Sci. Eng. A, 2018, vol. 732, pp. 112–9.

    Article  CAS  Google Scholar 

  14. S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara, and T. Kobayashi: ISIJ Int., 2003, vol. 43, pp. 2038–45.

    Article  CAS  Google Scholar 

  15. S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 115–20.

    Article  Google Scholar 

  16. M. Nagini, R. Vijay, M. Ramakrishna, a. V. Reddy, and G. Sundararajan: Mater. Sci. Eng. A, 2015, vol. 620, pp. 490–9.

  17. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie: J. Nucl. Mater., 2010, vol. 405, pp. 95–100.

    Article  CAS  Google Scholar 

  18. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, and A. Deschamps: Acta Mater., 2017, vol. 127, pp. 165–77.

    Article  Google Scholar 

  19. J.H. Kim, T.S. Byun, and D.T. Hoelzer: J. Nucl. Mater., 2010, vol. 407, pp. 143–50.

    Article  CAS  Google Scholar 

  20. M. Serrano, M. Hernández-Mayoral, and A. García-Junceda: J. Nucl. Mater., 2012, vol. 428, pp. 103–9.

    Article  CAS  Google Scholar 

  21. S.F. Li, Z.J. Zhou, P.H. Wang, H.Y. Sun, M. Wang, and G.M. Zhang: Mater. Des., 2016, vol. 90, pp. 318–29.

    Article  CAS  Google Scholar 

  22. Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M.H. Mathon: J. Nucl. Mater., 2009, vol. 386–388, pp. 430–2.

    Article  Google Scholar 

  23. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T.F. Abe: J. Nucl. Mater., 2011, vol. 417, pp. 176–9.

    Article  CAS  Google Scholar 

  24. S. Li, Z. Zhou, M. Li, M. Wang, and G. Zhang: J. Alloys Compd., 2015, vol. 648, pp. 39–45.

    Article  CAS  Google Scholar 

  25. M. Nagini, R. Vijay, and K. V Rajulapati: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4197–209.

    Article  Google Scholar 

  26. Z. Oksiuta, P. Mueller, P. Spätig, and N. Baluc: J. Nucl. Mater., 2011, vol. 412, pp. 221–6.

    Article  CAS  Google Scholar 

  27. Q. Zhao, L. Yu, Z. Ma, H. Li, Z. Wang, and Y. Liu: Materials (Basel)., 2018, vol. 11, p. 1044.

    Article  Google Scholar 

  28. X. Boulnat, D. Fabregue, M. Perez, M.-H. Mathon, and Y. de Carlan: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2461–5.

    Article  Google Scholar 

  29. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A., 2014, vol. 45, pp. 1485–97.

    Article  Google Scholar 

  30. M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, and B. Fournier: J. Nucl. Mater., 2012, vol. 428, pp. 90–97.

    Article  CAS  Google Scholar 

  31. A. Chauhan, F. Bergner, A. Etienne, J. Aktaa, Y. de Carlan, C. Heintze, D. Litvinov, M. Hernandez-Mayoral, E. Oñorbe, B. Radiguet, and A. Ulbricht: J. Nucl. Mater., 2017, vol. 495, pp. 6–19.

    Article  CAS  Google Scholar 

  32. M. Nagini, R. Vijay, K. V. Rajulapati, A. V. Reddy, and G. Sundararajan: Mater. Sci. Eng. A, 2017, vol. 708, pp. 451–9.

    Article  CAS  Google Scholar 

  33. J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, and H. Abe: Mater. Sci. Eng. A, 2016, vol. 673, pp. 624–32.

    Article  CAS  Google Scholar 

  34. J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, and J.K. Hong: Mater. Sci. Eng. A, 2013, vol. 559, pp. 111–8.

    Article  CAS  Google Scholar 

  35. R. Rahmanifard, H. Farhangi, A.J. Novinrooz, and S. Moniri: Metall. Mater. Trans. A, 2012, vol. 44, pp. 990–8.

    Google Scholar 

  36. J. Ren, L. Yu, Y. Liu, C. Liu, H. Li, and J. Wu: Materials (Basel)., 2018, vol. 11, p. 118.

    Article  Google Scholar 

  37. M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills: Acta Mater., 2012, vol. 60, pp. 1827–39.

    Article  CAS  Google Scholar 

  38. J.H. Kim, T.S. Byun, D.T. Hoelzer, S.-W. Kim, and B.H. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 101–10.

    Article  CAS  Google Scholar 

  39. R. Jarugula, P.S. Babu, S.G.S. Raman, and G. Sundararajan: Materialia, 2020, vol. 12, p. 100788.

    Article  CAS  Google Scholar 

  40. A. Chauhan, D. Litvinov, Y. de Carlan, and J. Aktaa: Mater. Sci. Eng. A, 2016, vol. 658, pp. 123–34.

    Article  CAS  Google Scholar 

  41. J. Rösler and E. Arzt: Acta Met. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  42. S. Seils, A. Kauffmann, F. Hinrichs, D. Schliephake, T. Boll, and M. Heilmaier: Mater. Sci. Eng. A, 2020, vol. 786, p. 139452.

    Article  CAS  Google Scholar 

  43. R. DiDomizio, S. Huang, L. Dial, J. Ilavsky, and M. Larsen: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5409–18.

    Article  Google Scholar 

  44. R. Jarugula, S. Raman, and G. Sundararajan: Materialia, 2019, vol. 6, p. 100257.

    Article  Google Scholar 

  45. D. Brunner and J. Diehl: Phys. status solidi, 1987, vol. 104, pp. 145–55.

    Article  CAS  Google Scholar 

  46. M.M. Hutchison: Philos. Mag., 1963, vol. 8, pp. 121–7.

    Article  CAS  Google Scholar 

  47. C.E. Lacy and M. Gensamer: Trans. AsM, 1944, vol. 32, pp. 88–110.

    Google Scholar 

  48. G.I. Taylor: Proc. R. Soc. Lond. A, 1934, vol. 145, pp. 362–87.

    Article  CAS  Google Scholar 

  49. B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez, and Y. De Carlan: J. Nucl. Mater., 2015, vol. 465, pp. 54–62.

    Article  CAS  Google Scholar 

  50. J. Bentley and D. Hoelzer: Microsc. Microanal., 2008, vol. 14, pp. 1416–7.

    Article  Google Scholar 

  51. A. Steckmeyer, V.H. Rodrigo, J.M. Gentzbittel, V. Rabeau, and B. Fournier: J. Nucl. Mater., 2012, vol. 426, pp. 182–8.

    Article  CAS  Google Scholar 

  52. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  53. J.H. Schneibel and M. Heilmaier: Mater. Trans., 2015, vol. 55, pp. 44–51.

    Article  Google Scholar 

  54. J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  55. U.F. Kocks, A.S. Argon, and M.F. Ashby: Prog. Mater. Sci., 1975, vol. 19, pp. 1–291.

    Article  Google Scholar 

  56. E. Nembach: Acta Met. mater., 1992, vol. 40, pp. 3325–30.

    Article  CAS  Google Scholar 

  57. J. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, and H. Henein: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3043–61.

    Article  Google Scholar 

  58. J.B. Ferguson, B.F. Schultz, D. Venugopalan, H.F. Lopez, P.K. Rohatgi, K. Cho, and C.S. Kim: Met. Mater. Int., 2014, vol. 20, pp. 375–88.

    Article  CAS  Google Scholar 

  59. C.E. Carlton and P.J. Ferreira: Acta Mater., 2007, vol. 55, pp. 3749–56.

    Article  CAS  Google Scholar 

  60. W. Blum and X.H. Zeng: Acta Mater., 2009, vol. 57, pp. 1966–74.

    Article  CAS  Google Scholar 

  61. W. Blum and X.H. Zeng: Acta Mater., 2011, vol. 59, pp. 6205–6.

    Article  CAS  Google Scholar 

  62. J.H. Kim, T.S. Byun, and D.T. Hoelzer: J. Nucl. Mater., 2012, vol. 425, pp. 147–55.

    Article  CAS  Google Scholar 

  63. D. Srolovitz, R. Petkovic-Luton, and M.J. Luton: Scr. Metall., 1982, vol. 16, pp. 1401–6.

    Article  Google Scholar 

  64. E. Arzt and D.S. Wilkinson: Acta Metall., 1986, vol. 34, pp. 1893–8.

    Article  CAS  Google Scholar 

  65. E. Arzt and J. Rösler: Acta Metall., 1988, vol. 36, pp. 1053–60.

    Article  CAS  Google Scholar 

  66. Y.J. Li, X.H. Zeng, and W. Blum: Acta Mater., 2004, vol. 52, pp. 5009–18.

    Article  CAS  Google Scholar 

  67. W. Blum, Y.J. Li, J. Chen, X.H. Zeng, and K. Lu: Int. J. Mater. Res., 2006, vol. 97, pp. 1661–6.

    Article  CAS  Google Scholar 

  68. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.

    Google Scholar 

  69. F.S. Buffington, K. Hirano, and K. Cohen: Acta Metall., 1961, vol. 9, pp. 434–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. R. Vijay (ARCI, Hyderabad, India) for providing the material used in this study. Authors thank Dr. N.T.B.N. Koundinya for his assistance in compression tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganesh Sundara Raman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 20, 2020; accepted February 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarugula, R., Channagiri, S., Raman, S.G.S. et al. Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures. Metall Mater Trans A 52, 1901–1912 (2021). https://doi.org/10.1007/s11661-021-06200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06200-0

Navigation