Skip to main content
Log in

Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure (Fd \( \bar{3} \) m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749–57.

    Article  Google Scholar 

  2. S.J. Zinkle and J.T. Busby: Mater. Today, 2009, vol. 12, pp. 12–19.

    Article  Google Scholar 

  3. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi: J. Nucl. Mater., 2000, vol. 283–287, pp. 702–06.

    Article  Google Scholar 

  4. A. Alamo, V. Lambard, X. Averty, and M.H. Mathon: J. Nucl. Mater., 2004, vol. 329–333, pp. 333–37.

    Article  Google Scholar 

  5. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell: Intermetallics, 2005, vol. 13, pp. 387–92.

    Article  Google Scholar 

  6. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.

    Article  Google Scholar 

  7. T. Jayakumar, M.D. Mathew, and K. Laha: Procedia Eng., 2013, vol. 55, pp. 259–70.

    Article  Google Scholar 

  8. 8.S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita: Mater. Trans., 2005, vol. 46, pp. 487–92.

    Article  Google Scholar 

  9. S. Ukai: Compr. Nucl. Mater., 2012, vol. 4, pp. 241–71.

    Article  Google Scholar 

  10. G.R. Odette, M.J. Alinger, and B.D Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.

  11. M. Ratti, D. Leuvrey, M.H. Mathon, and Y. de Carlan: J. Nucl. Mater., 2009, vol. 386–388, pp. 540-43.

    Article  Google Scholar 

  12. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita: J. Phys. Chem. Solids, 2005, vol. 66, pp. 571–75.

    Article  Google Scholar 

  13. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita: J. Nucl. Mater., 2004, vol. 329–333, pp. 372–76.

    Article  Google Scholar 

  14. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe: J. Nucl. Mater., 2013, vol. 442, pp. S95–-S100.

    Article  Google Scholar 

  15. M. Ohnuma, J. Suzuki, S. Ohtsuka, S.-W. Kim, T. Kaito, M. Inoue, and H. Kitazawa: Acta Mater., 2009, vol. 57, pp. 5571–81.

    Article  Google Scholar 

  16. R. Schaublin, A. Ramar, N. Baluc, V. de Castro, M.A. Monge, T. Leguey, N. Schmid, and C. Bonjour, J. Nucl. Mater., 2006, vol. 351, pp. 247–60.

    Article  Google Scholar 

  17. A. Kimura, H.-S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai, and M. Fujiwara: J. Nucl. Sci. Technol., 2007, vol. 44, pp. 323–28.

    Article  Google Scholar 

  18. B. Dousti, R. Mojaver, H.R. Shahverdi, and R.S. Mamoory: J. Alloy. Compd., 2013, vol. 577, pp. 409-16.

    Article  Google Scholar 

  19. A. Pandey, K. Jayasankar, P. Parida, M. Debata, B.K. Mishra, and S. Saroja, Powder Technol., 2014, vol. 262, pp. 162–69

    Article  Google Scholar 

  20. Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie, and D. Yuhai: Mater. Lett., 2011, vol. 65, pp. 1672–74.

    Article  Google Scholar 

  21. Y. Liu, J. Fang, D. Liu, Z. Lu, F. Liu, S. Chen, and C.T. Liu: J. Nucl. Mater., 2010, vol. 396, pp. 86–93.

    Article  Google Scholar 

  22. P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe: J. Nucl. Mater., 2011, vol. 417, pp. 166–70.

    Article  Google Scholar 

  23. S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe: J. Nucl. Sci. Technol., 1997, vol. 34, pp. 256–63.

    Article  Google Scholar 

  24. R. Delhez, T.H. Keijser, J.I. Langford, D. Louer, E.J. Mittemeijer, and E.J. Snneveld: The Rietveld Method, Oxford University Press, Oxford, 1993, pp. 132–65.

    Google Scholar 

  25. R. Vijay, M. Nagini, J. Joardar, M. Ramakrishna, A.V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1611–20.

    Article  Google Scholar 

  26. M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, and G. Sundararajan: Mater. Sci. Eng. A, 2015, vol. 620, pp. 490–99.

    Article  Google Scholar 

  27. J. Wosik, B. Dubial, A. Kruk, H.J. Penkalla, F. Schubert, and A.C. Filemonowicz: Mater. Charact., 2001, vol. 46, pp. 119–23.

    Article  Google Scholar 

  28. D.B. Williams and C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, 1996.

    Book  Google Scholar 

  29. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  Google Scholar 

  30. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–144.

    Article  Google Scholar 

  31. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Prog. Mater. Sci., 1981, vol. 25, pp. 69–412.

    Article  Google Scholar 

  32. H. Zhang, M.J. Gorley, K.B. Chong, M.E. Fitzpatrick, S.G. Roberts, and P.S. Grant: J. Alloy. Compd., 2014, vol. 582, pp. 769–73.

    Article  Google Scholar 

  33. C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis: Acta Mater., 2013, vol. 61, pp. 2219–35.

    Article  Google Scholar 

  34. G. Ressel, S. Primig, and H. Leitner: Int. J. Mater. Res., 2013, vol. 104, pp. 1088–95.

    Article  Google Scholar 

  35. M.L. Brocq, F. Legendre, M.-H. Mathon, A. Mascaro, S. Poissonnet, B. Radiguet, P. Pareige, M. Loyer, and O. Leseigneur: Acta Mater., 2012, vol. 60, pp. 7150–59.

    Article  Google Scholar 

  36. 36.M.C. Brandes, L. Kovarik, M.K. Miller, and M.J. Mills: J. Mater. Sci., 2012, vol. 47, pp. 3913–23.

    Article  Google Scholar 

  37. C.A. Williams, G.D.W. Smith, and E.A. Marquis: Scripta Mater., 2012, vol. 67, pp. 108–11.

    Article  Google Scholar 

  38. Z. Oksiuta, P. Kozikowski, M. Lewandowska, M. Ohnuma, K. Suresh, and K.J. Kurzydlowski: J. Mater. Sci., 2013, vol. 48, pp. 4620–25.

    Article  Google Scholar 

  39. J. Ribis and Y. de Carlan: Acta Mater., 2012, vol. 60, pp. 238–52.

    Article  Google Scholar 

  40. A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen: Nat. Mater., 2011, vol. 10, pp. 922–26.

    Article  Google Scholar 

  41. P. Olier, J. Malaplate, M.H. Mathon, D. Nunes, D. Hamon, L. Toualbi, Y. de Carlan, and L. Chaffron: J. Nucl. Mater., 2012, vol. 428, pp. 40–46.

    Article  Google Scholar 

  42. J. Ribis, M.-L. Lescoat, S.Y. Zhong, M.-H. Mathon, and Y. de Carlan: J. Nucl. Mater., 2013, vol. 442, pp. S101–05.

    Article  Google Scholar 

  43. Z. Oksiuta, M. Lewandowska, and K.J. Kurzydłowski: Mech. Mater., 2013, vol. 67, pp. 15–24.

    Article  Google Scholar 

  44. R. Vijay, M. Nagini, S.S. Sarma, M. Ramakrishna, A.V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 777–84.

    Article  Google Scholar 

  45. J.H. Kim, T.S Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, and J.K. Hong: Mater. Sci. Eng. A, 2013, vol. 559, pp. 111–18.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. K. Satya Prasad, Dr. G. Ravichandra, and Dr. J. Joardar for the help in microstructural characterization. The authors also thank Professor D. Banerjee, IISc, Bangalore for the help rendered in HRTEM studies. The authors gratefully acknowledge IGCAR, Kalpakkam for funding (No. IGC/MMG/MMD/ODS/01/2010) the work and NFC, Hyderabad for carrying out hot extrusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vijay.

Additional information

Manuscript submitted February 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagini, M., Vijay, R., Rajulapati, K.V. et al. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel. Metall Mater Trans A 47, 4197–4209 (2016). https://doi.org/10.1007/s11661-016-3583-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3583-7

Keywords

Navigation