Skip to main content
Log in

An Assessment of Milling Time on the Structure and Properties of a Nanostructured Ferritic Alloy (NFA)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tensile properties of a 14 wt pct chromium nanostructured ferritic alloy (NFA) are assessed as a function of attrition time. Small angle X-ray scattering results show quantitatively that the number density of precipitated oxides increases as a function of milling time. This difference in oxide density alone is not enough to describe the tensile behavior of the NFA as a function of temperature. As a result, a previously proposed root mean square strengthening model is applied to the current study where direct dispersion strengthening, grain boundary strengthening, dislocation forest hardening, and matrix hardening are all considered. When an optimization routine is conducted, the fitting results suggest that the precipitated oxides are soft obstacles to dislocation motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.R. Odette, M.J. Alinger, B.D. Wirth, Ann. Rev. Mater. Res., 38 (2008), 471–503.

    Article  Google Scholar 

  2. N. Akasaka, S. Yamashita, T. Yoshitake, S. Ukai, A. Kimura, J. Nuc. Mater., 329-333 (2004), 1053–56.

    Article  Google Scholar 

  3. A. Alamo, V. Lambard, X. Avery, and M.H. Mathon, J. Nucl. Mater., 329-333 (2004), 333–37.

    Article  Google Scholar 

  4. G.R. Odette, D.T. Hoelzer: JOM, 2010, 62, 84–92.

    Article  Google Scholar 

  5. P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallen, M.K. Miller, Scripta Mat., 65 (2011), 731–34.

    Article  Google Scholar 

  6. M.J. Alinger: Ph.D Thesis, University of California, Santa Barbara, 2004.

  7. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, H. Tamehiro, ISIJ International, 39 (1999), 176–82.

    Article  Google Scholar 

  8. G.S. Ansell, T.D. Cooper, F.V. Lenel: Oxide Dispersions Strengthening, Gordon and Breach, New York, 1968.

    Google Scholar 

  9. M. Hasegawa, M. Osawa, Met. Trans. A, 16A (1985), 1043–48.

    Article  Google Scholar 

  10. D. Haussler, B. Reppich, M. Bartsch, U. Messerschmidt, Mater. Sci. Eng. A, 309-310 (2001), 500–04.

    Article  Google Scholar 

  11. T. Hayashi, P.M. Sarosi, J.H. Schneibel, M.J. Mills, Acta Mat., 56 (2008), 1407–16.

    Article  Google Scholar 

  12. R. DiDomizio, M. Alinger, R. Stonitsch, and S. Thamboo: US patent 8,357,328 (2013).

  13. J. Ilavsky, J. Appl. Cryst., 45 (2012), 324-328.

    Article  Google Scholar 

  14. J. Ilavsky, P.R. Jemian, J. Appl. Cryst., 42 (2009), 347–53.

    Article  Google Scholar 

  15. P.R. Jemian, J.R. Weertman, G.G. Long, R.D. Spal, Acta Metall. Mater., 39 (1991), 2477–87.

    Article  Google Scholar 

  16. J.A. Potton, G.J. Daniell, B.D. Rainford, J. Appl. Cryst., 21 (1988), 663–68.

    Article  Google Scholar 

  17. J.A. Potton, G.J. Daniell, B.D. Rainford, J. Appl. Cryst. 21 (1988), 891–97.

    Article  Google Scholar 

  18. P. Olier, J. Malaplate, M.H. Mathon, D. Nunes, D. Hamon, L Touabli, Y. de Carlan, L. Chaffron, J. Nuc Mater., 428 (2012), 40–46.

    Article  Google Scholar 

  19. P. Olier, M. Couvart, C. Cayron, N. Lochet, L. Chaffron, J. Nuc. Mater., 442 (2013), S106–11.

    Article  Google Scholar 

  20. C.A. Williams, P. Unifantowicz, N. Baluc, G.D. Smith, E.A. Marquis, Acta Mater., 61 (2013), 2219–35.

    Article  Google Scholar 

  21. A. Hirata, T. Fujita, C.T. Liu, M.W. Chen, Acta Mater., 60 (2012), 5686–96.

    Article  Google Scholar 

  22. M. Brandes, L. Kovarik, M. Miller, G. Daehn, M. Mills, Acta Mat., 60 (2011), 1827–39.

    Article  Google Scholar 

  23. J. Kim, T. Byun, D. Hoelzer, C. Park, J. Yeom, J. Hong. Mater. Sci. Eng. A, 559 (2013), 111–18.

    Article  Google Scholar 

  24. J. Kim, T. Byun, D. Hoelzer, S. Kim, B. Lee, Mater. Sci. Eng. A, 559 (2013), 101–10.

    Article  Google Scholar 

  25. G. Dieter. Mechanical Metallurgy, McGraw Hill, Boston, 1986.

    Google Scholar 

  26. S. Zinkle, Y. Matsukawa, J. Nuc. Mater., 329-333 (2004), 88-96.

    Article  Google Scholar 

  27. G. Blessing: in Dynamics Elastic Modulus Measurements, ASTM STP 1045, A. Wolfenden, ed., American Society for Testing and Materials, Philadelphia, PA, 1990, pp. 47–57.

  28. Z. Sekido, A. Hoshino, M. Fukuzaki, Y. Mitarai, T. Maruko. Mat Sci. & Eng. A, 528 (2011), 8451–59.

    Article  Google Scholar 

  29. M. Kassner. Acta Mat., 52 (2004), 1-9.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Department of Energy under Award Number EE0003487. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes and legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DoE) Office of Science by Argonne National Laboratory, was supported by the U.S. DoE under Contract No. DE-AC02-06CH11357. The authors greatly acknowledge Dr. Matthew Alinger, Dr. Ernie Hall, Dr. Yan Gao, Mr. Orrie Riccobono, Mr. Ian Spinelli, Mr. Tony Barbuto, Ms. Rebecca Casey, Mr. Mitchell Hammond, and Dr. Ning Zhou for their efforts and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard DiDomizio.

Additional information

Manuscript submitted December 10, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiDomizio, R., Huang, S., Dial, L. et al. An Assessment of Milling Time on the Structure and Properties of a Nanostructured Ferritic Alloy (NFA). Metall Mater Trans A 45, 5409–5418 (2014). https://doi.org/10.1007/s11661-014-2521-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2521-9

Keywords

Navigation