Skip to main content
Log in

Modeling of the ECAP Induced Strain Hardening Behavior in FCC Metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, a multi-scale framework that couples a crystal plasticity (CP) scheme with a continuum dislocation dynamics (CDD) model is proposed to predict the material behavior, microstructure and texture during equal channel angular pressing (ECAP) processes. The strain hardening in the model is considered to result from both the increase in the dislocation density and the grain fragmentation. The grain fragmentation process is modeled by accounting for the grain-grain interaction and incorporating the concept of the geometrically necessary dislocations (GNDs) into the mean free path of the dislocations. GNDs result from grain boundaries restricting the free deformation of a grain, causing an internal plastic deformation gradient that subsequently leads to grain fragmentation. A commercial Al-1100 billet, with rolling texture, is ECAP processed under Route C for different numbers of passes. Mechanical, microstructure, and texture characterization is achieved for the received and ECAPed materials. The proposed model parameters are calibrated using the tensile true-stress true-strain curves of the unprocessed material at two strain rates. The ECAP-processed aluminum microstructure, texture, dislocation densities and the mechanical properties are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. The raw data required to reproduce these findings will be made available to download from [https://deepblue.lib.umich.edu/data].

References

  1. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida: CIRP Ann. - Manuf. Technol., 2008, vol. 57, pp. 716–735.

    Google Scholar 

  2. V.M. Segal: Phys. Tech. Inst. Acad. Sci. Buelorussia, 1974.

  3. V.M. Segal: Mater. Sci. Eng. A., 1995, vol. 197, pp. 157–164.

    Google Scholar 

  4. V.M. Segal: Mater. Sci. Eng. A, 1999, vol. 271, pp. 322–333.

    Google Scholar 

  5. R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    CAS  Google Scholar 

  6. I.J. Beyerlein, C.N. Tomé: Int. J. Plast., 2007, vol. 23, pp. 640–664.

    CAS  Google Scholar 

  7. Z. Horita, T. Fujinami, T.G. Langdon: Mater. Sci. Eng. A., 2001, vol. 318, pp. 34–41.

    Google Scholar 

  8. L.S. Toth, C. Gu, Mater. Charact., 2014, vol. 92, pp. 1–14.

    CAS  Google Scholar 

  9. A.S. Khan, C.S. Meredith: Int. J. Plast., 2010, vol. 26, pp. 189–203.

    CAS  Google Scholar 

  10. I.J. Beyerlein, L.S. Tóth: Prog. Mater. Sci., 2009, vol. 54, pp. 427–510.

    CAS  Google Scholar 

  11. K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–1599.

    CAS  Google Scholar 

  12. S. Li, O. V. Mishin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1689–92.

    Google Scholar 

  13. S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth: Metall. Mater. Trans. a-Physical Metall. Mater. Sci., 1997, vol. 28, pp. 1047–57.

    CAS  Google Scholar 

  14. M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein, F. Djavanroodi: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1367–75.

    CAS  Google Scholar 

  15. V. V Stolyarov, R. Lapovok: J. All. Comp., 2004, vol. 378, pp. 233–236.

    CAS  Google Scholar 

  16. N.A. Krasil’nikov: Russ. Metall., 2005, vol. 3, pp. 220–26.

  17. M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater., 2011, vol. 64, pp. 916–918.

    CAS  Google Scholar 

  18. N. Hansen, C.Y. Barlow, Plastic Deformation of Metals and Alloys, 2014, Fifth Edit, Elsevier.

    Google Scholar 

  19. W. D.Kuhlmann, Mater. Sci. Eng. A,1989, vol. 3, pp. 1–41.

    Google Scholar 

  20. B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater., 1992, vol. 40, 205–219.

    CAS  Google Scholar 

  21. D. Kuhlmann-Wilsdorf, N. Hansen, Scr. Metall. Mater., 1991, vol. 25, pp. 1557–1562.

    CAS  Google Scholar 

  22. A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Acta Mater., 2007, vol. 55, pp. 13–28.

    CAS  Google Scholar 

  23. Y.L. Wei, A. Godfrey, W. Liu, Q. Liu, X. Huang, N. Hansen, G. Winther, Scr. Mater., 2011, vol. 65, pp. 355–358.

    CAS  Google Scholar 

  24. D. Kuhlmann-Wilsdorf, Scr. Mater., 1997, vol. 36, pp. 173–181.

    CAS  Google Scholar 

  25. H.W. Zhang, X. Huang, N. Hansen, Acta Mater., 2008, vol. 56, pp. 5451–5465.

    CAS  Google Scholar 

  26. N.Q. Chinh, T. Csanádi, J. Gubicza, T.G. Langdon, Acta Mater., 2010, vol. 58, pp. 5015–5021.

    CAS  Google Scholar 

  27. N. Hansen, X. Huang, D.A. Hughes, Mater. Sci. Eng. A, 2001, vol. 317, pp. 3–11.

    Google Scholar 

  28. D.A. Hughes, N. Hansen, Acta Mater., 2000, vol. 48, pp. 2985–3004.

    CAS  Google Scholar 

  29. Y. Chen, Y. Li, L. He, C. Lu, H. Ding, Q. Li, Mater. Lett., 2008, vol. 62, pp. 2821–2824.

    CAS  Google Scholar 

  30. M. Zehetbauer, V. Seumer, Acta Metall. Mater. 41, 1993, pp. 577–588.

    CAS  Google Scholar 

  31. M. Zehetbauer, Acta Metall. Mater., 1993, vol. 41, pp. 589–599.

    CAS  Google Scholar 

  32. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    CAS  Google Scholar 

  33. N.Q. Chinh, G. Horváth, Z. Horita, T.G. Langdon, Acta Mater., 2004, vol. 52, pp. 3555–3563.

    CAS  Google Scholar 

  34. D. Moldovan, D. Wolf, S.R. Phillpot, A.J. Haslam, Acta Mater., 2002, vol. 50, pp. 3397–3414.

    CAS  Google Scholar 

  35. D. Farkas, S. Mohanty, J. Monk, Mater. Sci. Eng. A, 2008, vol. 493, pp. 33–40.

    Google Scholar 

  36. N. Hansen, Scr. Mater., 2004, vol. 51, pp. 801–806.

    CAS  Google Scholar 

  37. Y.C. Chen, Y.Y. Huang, C.P. Chang, P.W. Kao: Acta Mater., 2003, vol. 51, pp. 2005–15.

    CAS  Google Scholar 

  38. W.H. Huang, C.Y. Yu, P.W. Kao, C.P. Chang: Mater. Sci. Eng. A., 2004, vol. 366, pp. 221–228.

    Google Scholar 

  39. I. Nikulin, R. Kaibyshev: Mater. Sci. Forum, 2012, vol. 715–716, pp. 317–322.

    Google Scholar 

  40. S.-Y. Chang, J.G. Lee, K.-T. Park, D.H. Shin: Mater. Trans., 2001, vol. 42, pp. 1074–80.

    CAS  Google Scholar 

  41. É.F. Prados, V.L. Sordi, M. Ferrante: Mater. Res., 2008, vol. 11, pp. 199–205.

    CAS  Google Scholar 

  42. J.H. Park, K.-T. Park, Y.S. Lee, W.J. Nam: Metall. Mater. Trans. A., 2005, vol. 36, pp. 1365–68.

    Google Scholar 

  43. Y.M. Wang, E. Ma: Mater. Sci. Eng. A., 2004, vol. 375–377, pp. 46–52.

    Google Scholar 

  44. Y. Beygelzimer: Mech. Mater., 2005, vol. 37, pp. 753–767.

    Google Scholar 

  45. A. Ostapovets, P. Šedá, A. Jäger, P. Lejček, Int. J. Plast., 2012, vol. 29, pp. 1–12.

    CAS  Google Scholar 

  46. L.S. Tóth, Y. Estrin, R. Lapovok, C. Gu, Acta Mater., 2010, vol. 58, pp. 1782–1794.

    Google Scholar 

  47. M.J. Starink, X.G. Qiao, J. Zhang, N. Gao, Acta Mater., 2009, vol. 57, pp. 5796–5811.

    CAS  Google Scholar 

  48. H. Petryk, S. Stupkiewicz: Mater. Sci. Eng. A., 2007, vol. 444, pp. 214–219.

    Google Scholar 

  49. R.A. Lebensohn, C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    CAS  Google Scholar 

  50. N.A. Enikeev, M.F. Abdullin, A.A. Nazarov, I.J. Beyerlein: Int. J. Mater. Res., 2007, vol. 98, pp.167–171.

    CAS  Google Scholar 

  51. A.A. Nazarov, N.A. Enikeev, A.E. Romanov, T.S. Orlova, I. V. Alexandrov, I.J. Beyerlein, R.Z. Valiev: Mat. Sci., 2006, vol. 54, pp. 985–995.

    CAS  Google Scholar 

  52. K. Frydrych, K. Kowalczyk-Gajewska: Mater. Sci. Eng. A., 2016, vol. 658, pp. 490–502.

    CAS  Google Scholar 

  53. S.R. Kalidindi, B.R. Donohue, S. Li: Int. J. Plast., 2009, vol. 25, pp. 768–779.

    CAS  Google Scholar 

  54. K.H. Jung, D.K. Kim, Y.T. Im, Y.S. Lee: Int. J. Plast., 2013, vol. 42, pp. 120–140.

    CAS  Google Scholar 

  55. I.J. Beyerlein, R.A. Lebensohn, C.N. Tomé: Mater. Sci. Eng. A., 2003, vol. 345, pp. 122–138.

    Google Scholar 

  56. M. Seefeldt, L. Delannay, B. Peeters, S.R. Kalidindi, P. Van Houtte, Mater. Sci. Eng. A, 2001, vol. 319, pp. 192–196.

    Google Scholar 

  57. A.E. Romanov, V.I. Vladimirov, North Holland, Amsterdam, 1992, vol. 9, pp. 191–422.

    Google Scholar 

  58. A.H. Kobaissy, G. Ayoub, L.S. Toth, S. Mustapha, M. Shehadeh: Int. J. Plast., 2018, vol. 114, pp. 252–271.

    Google Scholar 

  59. A.S. Khan, J. Liu: Int. J. Plast., 2016, vol. 86, pp. 56–69.

    CAS  Google Scholar 

  60. Y. Aoyagi, R. Kobayashi, Y. Kaji, K. Shizawa: Int. J. Plast., 2013, vol. 47, pp. 13–28.

    Google Scholar 

  61. N.C. Admal, G. Po, J. Marian: Int. J. Plast., 2018, vol. 106, pp. 1–30.

    CAS  Google Scholar 

  62. C.F.O. Dahlberg, J. Faleskog, C.F. Niordson, B.N. Legarth: Int. J. Plast., 2013, vol. 43. pp. 177–195.

    Google Scholar 

  63. S. Wulfinghoff, E. Bayerschen, T. Böhlke: Int. J. Plast., 2013, vol. 51, pp. 33–46.

    CAS  Google Scholar 

  64. M.E. Gurtin: Int. J. Plast., 2008, vol. 26, pp. 1073–96.

    Google Scholar 

  65. O. Daaland, E. Nes: Acta Mater., 1996, vol. 44, pp.1389–1411.

    CAS  Google Scholar 

  66. M. Zecevic, R.A. Lebensohn, R.J. McCabe, M. Knezevic: Int. J. Plast., 2018, vol. 109, pp.193–211.

    Google Scholar 

  67. A.A. Ridha, W.B. Hutchinson: Acta Metall., 1982, vol. 30, pp. 1929–39.

    CAS  Google Scholar 

  68. S. Huang, A.S. Khan: Int. J. Plast., 1992, vol. 8, pp. 501–517.

    CAS  Google Scholar 

  69. J. Hirsch, T. Al-Samman: Acta Mater., 2013, vol. 61, pp. 818–843.

    CAS  Google Scholar 

  70. B. Poorganji, P. Sepehrband, H. Jin, S. Esmaeili: Scr. Mater., 2010, vol. 63, pp. 1157–60.

    CAS  Google Scholar 

  71. E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes: Mater. Sci. Eng. A., 2007, vol. 458, pp. 226–234.

    Google Scholar 

  72. J.K. Kim, H.K. Kim, J.W. Park, W.J. Kim: Scr. Mater., 2005, vol. 53, pp. 1207–11.

    CAS  Google Scholar 

  73. G.I. Taylor, J. Inst. Met., 1938, vol. 62, pp. 307–325.

    Google Scholar 

  74. T.H. Lin: J. Mech. Phys. Solids., 1957, vol. 5, pp. 143–149.

    CAS  Google Scholar 

  75. N. Zouhal, A. Molinari, T.S. Toth, Int. J. Plast., 1996, vol. 12, pp. 343–360.

    CAS  Google Scholar 

  76. E.H. Lee: J. Appl. Mech., 1969, vol. 36, pp. 1–6.

    Google Scholar 

  77. E. Orowan: Proc. Phys. Soc., 1940, vol. 52, pp. 8.

    Google Scholar 

  78. D. Li, H. Zbib, X. Sun, M. Khaleel: Int. J. Plast., 2014, vol. 52, pp. 3–17.

    CAS  Google Scholar 

  79. H. Lyu, A. Ruimi, H.M. Zbib: Int. J. Plast., 2015, vol. 72, pp. 44–59.

    CAS  Google Scholar 

  80. H. Gao, Y. Huang: Scr. Mater., 2003, vol. 48, pp. 113–118.

    CAS  Google Scholar 

  81. T. Ohashi, M. Kawamukai, H. Zbib: Int. J. Plast., 2007, vol. 23, pp. 897–914.

    CAS  Google Scholar 

  82. T. Ohashi: Int. J. Plast., 2005, vol. 21, pp. 2071–2088.

    CAS  Google Scholar 

  83. F. Nye: Acta Metall., 1953, vol. 1.

  84. P.J. Konijnenberg, S. Zaefferer, D. Raabe: Acta Mater., 2015, vol. 99, pp. 402–414.

    CAS  Google Scholar 

  85. L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, S. Suwas: Acta Mater., 2004, vol. 52, pp. 1885–98.

    Google Scholar 

  86. S. Li, I.J. Beyerlein, M.A.M. Bourke: Mater. Sci. Eng. A., 2005, vol. 394, pp. 66–77.

    Google Scholar 

  87. S. LI: Trans. Nonferrous Met. Soc. China., 2013, vol. 23, pp. 170–179.

    CAS  Google Scholar 

  88. C.F. Gu, L.S. Tóth, C.H.J. Davies: Scr. Mater., 2011, vol. 65, pp. 167–170.

    CAS  Google Scholar 

  89. Y. Estrin, H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Google Scholar 

  90. H. Mecking, U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    CAS  Google Scholar 

  91. Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet: Acta Mater., 1998, vol. 46, pp. 5509–22.

    CAS  Google Scholar 

  92. L.S. Toth, P. Gilormini, J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 3077–91.

    CAS  Google Scholar 

  93. H. Hallberg, M. Wallin, M. Ristinmaa: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1126–34.

    Google Scholar 

  94. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein: Prog. Nat. Sci. Mater. Int., 2016, vol. 26, pp. 182–191.

    CAS  Google Scholar 

  95. C. V. Venkatesh, S.G.S. Raman, U. Chakkingal, Trans. Indian Inst. Met., 2013, vol. 66, pp. 147–154.

    CAS  Google Scholar 

  96. M. Howeyze, H. Arabi, A.R. Eivani, H.R. Jafarian, Mater. Sci. Eng. A, 2018, vol. 720, pp. 160–168.

    CAS  Google Scholar 

  97. M. Howeyze, A.R. Eivani, H. Arabi, H.R. Jafarian, Mater. Sci. Eng. A, 2018, vol. 732, pp. 120–128.

    CAS  Google Scholar 

  98. S.E. Mousavi, M.H. Khaleghifar, M. Meratian, B. Sadeghi, P. Cavaliere, Materialia, 2018, vol. 4, pp. 310–322.

    Google Scholar 

  99. M. Miraglia, P. Dawson, T. Leffers: Acta Mater., 2007, vol. 55, pp. 799–812.

    CAS  Google Scholar 

  100. T. Hama, H. Takuda, Int. J. Plast., 2011, vol. 27, pp. 1072–1092.

    CAS  Google Scholar 

  101. G. Winther, Acta Mater., 2003, vol. 51, pp. 417–429.

    CAS  Google Scholar 

  102. G. Gottstein, Physikalische Grundlagen Der Materialkunde, Springer-Verlag, Berlin- Heidelberg, Germany, 1998.

    Google Scholar 

  103. G.I. Taylor, J. Inst. Met., 1938, vol. 62, pp. 307–324.

    Google Scholar 

  104. R. Von Mises, Zeitschrift Fur Angew. Math. Und Mech., 1928, vol. 8, pp. 161–185.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the American University of Beirut (AUB) and the National Council for Scientific Research of Lebanon (CNRS-L) for granting a doctoral fellowship to Ali Al-Hadi Kobaissy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Ayoub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobaissy, A.AH., Ayoub, G., Nasim, W. et al. Modeling of the ECAP Induced Strain Hardening Behavior in FCC Metals. Metall Mater Trans A 51, 5453–5474 (2020). https://doi.org/10.1007/s11661-020-05971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05971-2

Navigation