Skip to main content
Log in

Multi-Length Scale Characterization of Microstructure Evolution and Its Consequence on Mechanical Properties in Dissimilar Friction Stir Welding of Titanium to Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In dissimilar friction stir welding (FSW), the weld nugget is composed of two elements, which are mechanically mixed. This microstructure helps enhance the mechanical properties when they are homogeneously mixed, and the particles are sub-micron in size. Therefore, it is important to understand the mechanism of the particle formation and their distribution for engineering the mechanical properties of the weld. In the present investigation, dissimilar FSW between commercial purity Al and Ti has been carried out. The weld nugget consisted of distributed Ti particles in an Al matrix. The distribution of the Ti particles in the weld nugget was characterized using X-ray micro-computed tomography (XCT). Microstructural evolution in Ti and Al was examined using a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS), X-ray diffraction and electron back-scattered diffraction (EBSD). Hardness and tensile tests were carried out to determine the integrity of the welds. The XCT result shows that the weld nugget contains Ti particles of variable size. The finer particles of Ti are distributed homogeneously in the weld nugget, unlike large particles. The deformation mechanisms and microstructural evolution of the Ti interface and Al matrix are investigated using EBSD. It is observed that the microstructure of both Ti and Al is substantially refined. However, for a given grain in Al, the boundary is of mixed character, namely low- and high-angle boundaries. Hardness data of the weld indicate large variation within the nugget region. The tensile test sample revealed that the failure of the sample occurs on the Al side of the weld. The fractograph indicates ductile and brittle modes of fracture with a bimodal distribution of dimples at the surface. Lack of twining and fine grains (40 to 5 µm) at the Ti interface indicates high-temperature deformation. Deformation of Ti at low temperature and high strain rate is caused by adiabatic shear banding (ASB). In these shear bands, a high level of grain refinement is observed and is a path for easy crack propagation. It is proposed that the ASB-controlled deformation of Ti leads to a recrystallized microstructure at the interface and fragmentation of Ti. These Ti particles undergo further fragmentation to form smaller particles. On the other hand, microstructural evolution in Al is gradual because of the high stacking fault energy, which leads to continuous dynamic recrystallization (CDRX) through the dynamic recovery (DRV) mechanism. The mechanical properties of the weld depend on the characteristics of particles in the Al matrix. Proper control of the fragmentation and distribution of Ti particles and interface property can lead to superior mechanical properties of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.J. Wilden and S. Herz: in: Proceedings of The 3rd International Brazing and Soldering Conference, April 24–26, 2006, Crown Plaza Riverwalk Hotel, San Antonio, TX, 2006, pp. 338–43.

  2. A. Fuji, Science and Technology of Welding and Joining, 2002, vol. 7, pp. 413-416.

    Article  CAS  Google Scholar 

  3. A.F. Y.C. Kim, Science and Technology of Welding and Joining, 2002, vol. 7 pp. 149-154.

    Article  CAS  Google Scholar 

  4. C.Q. Zhang, J.D. Robson, O. Ciuca, P.B. Prangnell, Materials Characterization, 2014, vol. 97 pp. 83-91.

    Article  CAS  Google Scholar 

  5. T.S. Thomas Lienert, S. Babu, and V. Acoff: Welding Fundamentals and Processes, ASM International, Materials Park, OH, 2011.

  6. R. Jiangwei, L. Yajiang, F. Tao, Microstructure characteristics in the interface zone of Ti/Al diffusion bonding, Materials Letters, 2002, vol. 56, pp. 647-652.

    Article  Google Scholar 

  7. W. Liu, L. Long, Y. Ma, L. Wu, Journal of Alloys and Compounds, 2015, vol. 643, pp.34-39.

    Article  CAS  Google Scholar 

  8. D.-f. Mo, T.-f. Song, Y.-j. Fang, X.-s. Jiang, C.Q. Luo, M.D. Simpson, Z.-p. Luo, Advances in Materials Science and Engineering, 2018, vol. 2018, pp. 15-16.

    Article  Google Scholar 

  9. F.J.J. Van Loo, G.D. Rieck, Acta Metallurgica, 1973, vol. 21, pp. 61-71.

    Article  Google Scholar 

  10. D. Bakavos, P.B. Prangnell, Materials Science and Engineering: A, 2010, vol. 527, pp. 6320-6334.

    Article  Google Scholar 

  11. A. Panteli, J.D. Robson, Y.-C. Chen, P.B. Prangnell, Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5773-5781.

    Article  Google Scholar 

  12. F. Balle, J. Magin, Materials Science Forum, 2014, vol. 794-796, pp. 345-350.

    Article  Google Scholar 

  13. N. Tsuji, Y. Saito, S.-H. Lee, Y. Minamino, Advanced Engineering Materials, 2003, vol. 5, pp. 338-344.

    Article  CAS  Google Scholar 

  14. H. Yu, A.K. Tieu, C. Lu, A. Godbole, Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 4038-4045.

    Article  Google Scholar 

  15. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida: CIRP Annu. Manuf. Technol., 2008, vol. 57, pp. 716–35.

  16. M. Kimura, S. Nakamura, M. Kusaka, K. Seo, A. Fuji, Science and Technology of Welding and Joining, 2005, vol. 10, pp. 666-672.

    Article  CAS  Google Scholar 

  17. L. Kumar, K.U. Yazar, S. Pramanik, Materials Science and Engineering: A, 2019, vol. 754, pp. 400-410.

    Article  CAS  Google Scholar 

  18. V. Buchibabu, G.M. Reddy, D. Kulkarni, A. De, Journal of Materials Engineering and Performance, 2016, vol. 25, pp. 1163-1171.

    Article  CAS  Google Scholar 

  19. B. Vicharapu, H. Liu, H. Fujii, K. Narasaki, N. Ma, and A. De: Modeling of residual stresses in stationary shoulder friction stir welding, in: The National Meeting of JWS, 2019, vol. 2019s, pp. 52–55.

  20. A. Kar, S.K. Choudhury, S. Suwas, S.V. Kailas, Materials Characterization, 2018, vol. 145, pp. 402-412.

    Article  CAS  Google Scholar 

  21. A. Kar, S.V. Kailas, S. Suwas, Journal of Materials Engineering and Performance, 2018, vol. 27, pp. 6016–6026.

    Article  CAS  Google Scholar 

  22. A. Kar, S. Suwas, S.V. Kailas, Materials Science and Engineering: A, 2018, vol. 733, pp. 199-210.

    Article  CAS  Google Scholar 

  23. R.S. Mishra and H. Sidhar: Chapter 5—friction stir welding of Al–Li Alloys, in: Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys, ed. R.S. Mishra and Sidhar, Butterworth-Heinemann, Oxford, 2017, pp. 79–95.

  24. R.S. Mishra and H. Sidhar: Chapter 4—FSW of Al–Cu and Al–Cu–Mg Alloys, in: Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys, ed. R.S. Mishra and Sidhar, Butterworth-Heinemann, Elsevier Science, Oxford, 2016, pp. 79–95.

  25. N. Kumar, R.S. Mishra, and W. Yuan: Friction Stir Welding of Dissimilar Alloys and Materials, Elsevier Science, 2015, pp. 15–114.

  26. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports, 2015, vol. 50, pp. 1-78.

    Article  Google Scholar 

  27. J.-W. Choi, H. Liu, H. Fujii, Materials Science and Engineering: A, 2018, vol. 730, pp. 168-176.

    Article  CAS  Google Scholar 

  28. A. Kar, S. Suwas, S.V. Kailas, JOM, 2019, vol. 79, pp. 444–451.

    Article  Google Scholar 

  29. A. Shyam, S. Suwas, S. Bhargava, Practical Metallography, 1997, vol. 34, pp. 264-277.

    CAS  Google Scholar 

  30. Y. Li, L. Murr, J. McClure, Scripta Materialia, 1999, vol. 40, pp. 1041-1046.

    Article  CAS  Google Scholar 

  31. Y. Li, L.E. Murr, J.C. McClure, Materials Science and Engineering: A, 1999, vol. 271, pp. 213-223.

    Article  Google Scholar 

  32. Z. Zhang, D.E. Eakins, F.P.E. Dunne, International Journal of Plasticity, 2016, vol. 79, pp. 196-216.

    Article  CAS  Google Scholar 

  33. U. Dressler, G. Biallas, and U. Alfaro Mercado: Mater. Sci. Eng. A, 2009, vol. 526, pp. 113–17.

  34. K.S. Suresh, N. Kumar, R. S. Mishra, S. Suwas, Materials Science Forum, 2013, vol. 753, pp. 247-250.

    Article  Google Scholar 

  35. N. Nadammal, S.V. Kailas, J. Szpunar, S. Suwas, JOM, 2015, vol. 67, pp. 1014-1021.

    Article  CAS  Google Scholar 

  36. N. Nadammal, S.V. Kailas, J. Szpunar, S. Suwas, Materials Characterization, 2018, vol. 140, pp. 134-146.

    Article  CAS  Google Scholar 

  37. H.C. Madhu, P. Ajay Kumar, C.S. Perugu, and S.V. Kailas: J. Mater. Eng. Perform., 2018, vol. 27, pp. 1318–26.

  38. A. Kumar, D. Yadav, C.S. Perugu, S.V. Kailas, Materials & Design, 2017, vol. 113, pp. 99-108.

    Article  Google Scholar 

  39. A. Kar, S.V. Kailas, and S. Suwas: Trans. Indian Inst. Met., 2019, vol. 72 (6), 1533–36.

  40. A. Kar, S. Suwas, S.V. Kailas, The International Journal of Advanced Manufacturing Technology, 2018, vol. 100, pp. 435–443 .

    Article  Google Scholar 

  41. Y. Wei, J. Li, J. Xiong, F. Huang, F. Zhang, S.H. Raza, Materials Characterization, 2012, vol. 71, pp. 1-5.

    Article  CAS  Google Scholar 

  42. M. Sadeghi-Ghogheri, M. Kasiri-Asgarani, K. Amini, Kovove Mater, 2016, vol. 54, pp. 71-75.

    CAS  Google Scholar 

  43. K.-S. Bang, K.-J. Lee, H.-S. Bang, H.-S. Bang, MATERIALS TRANSACTIONS, 2011, vol. 52, pp. 974-978.

    Article  CAS  Google Scholar 

  44. Z. Song, K. Nakata, A. Wu, J. Liao, L. Zhou, Materials & Design, 2014, vol. 57, pp. 269-278.

    Article  CAS  Google Scholar 

  45. M. Meisnar, J.M. Bennett, D. Andrews, S. Dodds, R. Freeman, R. Bellarosa, D. Adams, A.F. Norman, T. Rohr, T. Ghidini, Materials Characterization, 2019, vol. 147, pp. 286-294.

    Article  CAS  Google Scholar 

  46. H. Zhao, M. Yu, Z. Jiang, L. Zhou, X. Song, Journal of Alloys and Compounds, 2019, vol. 789, pp. 139-149.

    Article  CAS  Google Scholar 

  47. C.L. Yuhua Chen, Geping Liu, The Open Materials Science Journal, 2011, vol. 5, pp. 256-261.

  48. Y.-h. Chen, Q. Ni, L.-m. Ke, Transactions of Nonferrous Metals Society of China, 2012, vol. 22, pp. 299-304.

    Article  Google Scholar 

  49. Y.C. Chen, K. Nakata, Materials & Design, 2009, vol. 30, pp. 469-474.

    Article  CAS  Google Scholar 

  50. K. Kumar, S. V. Kailas, Science and Technology of Welding and Joining, 2010, vol. 15, pp. 305-311.

    Article  CAS  Google Scholar 

  51. A. Wu, Z. Song, K. Nakata, J. Liao, L. Zhou, Materials & Design, 2015, vol. 71, pp. 85-92.

    Article  CAS  Google Scholar 

  52. A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, J. Eckert, Acta Materialia, 2006, vol. 54, pp. 157-166.

    Article  CAS  Google Scholar 

  53. A. Slipenyuk, V. Kuprin, Y. Milman, J.E. Spowart, D.B. Miracle, Materials Science and Engineering: A, 2004, vol. 381, pp. 165-170.

    Article  Google Scholar 

  54. B. Derby, C. Lawrence, P. Mummery, Intrinsic and extrinsic fracture mechanisms in inorganic composite systems, TMS, Warrendale, USA, 1995, pp. 39.

    Google Scholar 

  55. A.P. Kumar, R. Raj, S.V. Kailas, Materials & Design, 2015, vol. 85, pp. 626-634.

    Article  Google Scholar 

  56. Y.B. Liu, S.C. Lim, L. Lu, M.O. Lai, Journal of Materials Science, 1994, vol. 29, pp. 1999-2007.

    Article  CAS  Google Scholar 

  57. V. Goyal, R. Ravi, S.R. Bakshi, P.R. Soni, Journal of Materials Engineering and Performance, 2019, vol. 28, pp. 117-122.

    Article  CAS  Google Scholar 

  58. S.-L. Kuo, Y.-C. Chen, M.-D. Ger, W.-H. Hwu, Materials Chemistry and Physics, 2004, vol. 86, pp. 5-10.

    Article  CAS  Google Scholar 

  59. R.S. Mishra and M.W. Mahoney: Friction Stir Welding and Processing, ASM International, 2007, pp. 10–212.

  60. H. Schmidt, J. Hattel, Modelling and Simulation in Materials Science and Engineering, 2005, vol. 13, pp. 77.

    Article  Google Scholar 

  61. A. Kar, S. Suwas, S.V. Kailas, JOM, 2019, vol. 71, pp. 444-451.

    Article  CAS  Google Scholar 

  62. S. Dixit, S. Kashyap, S.V. Kailas, K. Chattopadhyay, Journal of Alloys and Compounds, 2018, vol. 767, pp. 1072-1082.

    Article  CAS  Google Scholar 

  63. S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Acta Materialia, 1999, vol. 47, pp. 3705-3720.

    Article  CAS  Google Scholar 

  64. P.G. Partridge, Metallurgical Reviews, 1967, vol. 12, pp. 169-194.

    CAS  Google Scholar 

  65. H. Conrad, Progress in Materials Science, 1981, vol. 26, pp. 123-403.

    Article  CAS  Google Scholar 

  66. N.P. Gurao, R. Kapoor, S. Suwas, Acta Materialia, 2011, vol. 59, pp. 3431-3446.

    Article  CAS  Google Scholar 

  67. E. Yu, I. Kim, D.H. Shin, J. Kim, Materials Transactions, 2008, vol. 49, pp. 38-40.

    Article  CAS  Google Scholar 

  68. A.M. Garde, E. Aigeltinger, R.E. Reed-Hill, Metallurgical Transactions, 1973, vol. 4, pp. 2461-2468.

    Article  CAS  Google Scholar 

  69. J. Hodowany, G. Ravichandran, A.J. Rosakis, P. Rosakis, Experimental Mechanics, 2000, vol. 40, pp. 113-123.

    Article  CAS  Google Scholar 

  70. S.V. Kailas, Y.V.R.K. Prasad, S.K. Biswas, Metallurgical Transactions A, 1993, vol. 24, pp. 2513-2520.

    Article  Google Scholar 

  71. Y.V.R.K. Prasad, T. Seshacharyulu, Materials Science and Engineering: A, 1998, vol. 243, pp. 82-88.

    Article  Google Scholar 

  72. N. Ranc, L. Taravella, V. Pina, P. Herve, Mechanics of Materials, 2008, vol. 40, pp. 255-270.

    Article  Google Scholar 

  73. Y. Yang, B.F. Wang, Materials Letters, 2006, vol. 60, pp. 2198-2202.

    Article  CAS  Google Scholar 

  74. H.A. Grebe, H.-R. Pak, M.A. Meyers, Metallurgical Transactions A, 1985, vol. 16, pp. 761-775.

    Article  Google Scholar 

  75. M.A. Meyers, H.-R. Pak, Acta Metallurgica, 1986, vol. 34, pp. 2493-2499.

    Article  CAS  Google Scholar 

  76. W.J. Kim, S.J. Yoo, J.B. Lee, Scripta Materialia, 2010, vol. 62, pp. 451-454.

    Article  CAS  Google Scholar 

  77. S.K. Biswas, S.V. Kailas, Tribology International, 1997, vol. 30, pp. 369-375.

    Article  CAS  Google Scholar 

  78. S.V. Kailas, Y.V.R.K. Prasad, S.K. Biswas, Metallurgical and Materials Transactions A, 1994, vol. 25, pp. 2173-2179.

    Article  Google Scholar 

  79. E. Illeková, J.-C. Gachon, A. Rogachev, H. Grigoryan, J.C. Schuster, A. Nosyrev, P. Tsygankov, Thermochimica Acta, 2008, vol. 469, pp. 77-85.

    Article  Google Scholar 

  80. S. Suwas, G. Upadhyaya, Metals Materials and Processes, 1996, vol. 7, pp. 225-250.

    CAS  Google Scholar 

  81. D.V. Lazurenko, V.I. Mali, I.A. Bataev, A. Thoemmes, A.A. Bataev, A.I. Popelukh, A.G. Anisimov, N.S. Belousova, Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 4326-4334.

    Article  CAS  Google Scholar 

  82. D. Yadav, R. Bauri, Materials Science and Engineering: A, 2012, vol. 539, pp. 85-92.

    Article  CAS  Google Scholar 

  83. K. Vijayaraju, E.S. Dwarakadasa, T.S. Panchapagesan, Journal of Materials Science Letters, 1986, vol. 5, pp. 1000-1002.

    Article  CAS  Google Scholar 

  84. P. Xue, B.L. Xiao, Z.Y. Ma, Materials Science and Engineering: A, 2012, vol. 532, pp. 106-110.

    Article  CAS  Google Scholar 

  85. B. Li, Z. Zhang, Y. Shen, W. Hu, L. Luo, Materials & Design, 2014, vol. 53, pp. 838-848.

    Article  CAS  Google Scholar 

  86. Z. Liu, Q. Han, J. Li, Powder Technology, 2013, vol. 247, pp. 55-59.

    Article  CAS  Google Scholar 

  87. M. Sujata, S. Bhargava, S. Sangal, ISIJ International, 1996, vol. 36, pp. 255-262.

    Article  CAS  Google Scholar 

  88. H. Bang, H. Bang, H. Song, S. Joo, Materials & Design, 2013, vol. 51, pp. 544-551.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Defense Research & Development Organization (DRDO), Department of Science and Technology (DST), Ministry of Human Resources Development (MHRD), India, for support and research funding. We also thank the Institute X-ray Facility and Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science (IISc), Bangalore, for providing the facilities. The authors thank Mr. V. Vijayan and Dr. Devinder Yadav, Department of Mechanical Engineering, IISc Bangalore, for their help in performing the friction stir welding (FSW) experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 14, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 2247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Suwas, S. & Kailas, S.V. Multi-Length Scale Characterization of Microstructure Evolution and Its Consequence on Mechanical Properties in Dissimilar Friction Stir Welding of Titanium to Aluminum. Metall Mater Trans A 50, 5153–5173 (2019). https://doi.org/10.1007/s11661-019-05409-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05409-4

Navigation