Skip to main content
Log in

Microstructural Modification and High-Temperature Grain Stability of Aluminum in an Aluminum-Titanium Friction Stir Weld with Zinc Interlayer

  • Aluminum: New Alloys and Heat Treatment
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In dissimilar friction stir welding (FSW), the presence of a third interlayer material can have a positive influence on local ternary chemical reactions due to complex mechanical mixing in the weld nugget. This leads to a reduction and distribution of intermetallic compounds as fine particles in the weld nugget. These fine particles can provide high-temperature grain stability. In the present investigation, a zinc (Zn) interlayer was used during the FSW of aluminum (Al) with titanium (Ti). X-ray computed tomography results revealed the occurrence of mechanical mixing of Zn with both Al and Ti. To understand the nature of the weld nugget at high temperatures, heat treatment of the weld was carried out at 500°C for 60 min. The detailed mechanisms leading to the superior grain stability of Al in the weld nugget were investigated. The improvement in grain stability of Al may open up a new area of research and development to produce new materials with high-temperature grain stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Woizeschke and J. Schumacher, Phys. Proc. 41, 12 (2013).

    Article  Google Scholar 

  2. P. Woizeschke and F. Vollertsen, CIRP Ann. 65, 241 (2016).

    Article  Google Scholar 

  3. Y. Hovanski, P. Upadyay, S. Kleinbaum, B. Carlson, E. Boettcher, and R. Ruokolainen, JOM 69, 1060 (2017).

    Article  Google Scholar 

  4. U.R. Kattner, J.-C. Lin, and Y.A. Chang, Metall. Trans. A 23, 2081 (1992).

    Article  Google Scholar 

  5. M. Sujata, S. Bhargava, and S. Sangal, ISIJ Int. 36, 255 (1996).

    Article  Google Scholar 

  6. R. Borrisutthekul, Y. Miyashita, and Y. Mutoh, Sci. Technol. Adv. Mater. 6, 199 (2005).

    Article  Google Scholar 

  7. H.-B. Chen, K. Yan, T. Lin, S.-B. Chen, C.-Y. Jiang, and Y. Zhao, Mater. Sci. Eng. A 433, 64 (2006).

    Article  Google Scholar 

  8. P. Liu, Y. Li, H. Geng, and J. Wang, Mater. Lett. 61, 1288 (2007).

    Article  Google Scholar 

  9. D.E. Alman, J.A. Hawk, A.V. Petty, and J.C. Rawers, JOM 46, 31 (1994).

    Article  Google Scholar 

  10. Y. Chen, S. Chen, and L. Li, Int. J. Adv. Manuf. Technol. 44, 265 (2008).

    Article  Google Scholar 

  11. D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Mater. Des. 91, 80 (2016).

    Article  Google Scholar 

  12. J.C. Gachon, A.S. Rogachev, H.E. Grigoryan, E.V. Illarionova, J.J. Kuntz, D.Y. Kovalev, A.N. Nosyrev, N.V. Sachkova, and P.A. Tsygankov, Acta Mater. 53, 1225 (2005).

    Article  Google Scholar 

  13. M. Kimura, A. Fuji, T.H. North, K. Ameyama, and M. Aki, Mater. Sci. Technol. 13, 673 (1997).

    Article  Google Scholar 

  14. H.C. Madhu, P. Ajay Kumar, C.S. Perugu, and S.V. Kailas, J. Mater. Eng. Perform. 27, 1318 (2018).

    Article  Google Scholar 

  15. D. Yadav, R. Bauri, A. Kauffmann, and J. Freudenberger, Metall. Mater. Trans. A 47, 4226 (2016).

    Article  Google Scholar 

  16. R.S. Coelho, A. Kostka, J. dos Santos, and A.R. Pyzalla, Adv. Eng. Mater. 10, 1127 (2008).

    Article  Google Scholar 

  17. Z. Song, K. Nakata, A. Wu, J. Liao, and L. Zhou, Mater. Des. 57, 269 (2014).

    Article  Google Scholar 

  18. U. Dressler, G. Biallas, and U. Alfaro Mercado, Mater. Sci. Eng. A 526, 113 (2009).

    Article  Google Scholar 

  19. F. Adel Mehraban, F. Karimzadeh, and M.H. Abbasi, JOM 67, 998 (2015).

    Article  Google Scholar 

  20. N. Nadammal, S.V. Kailas, and S. Suwas, Mater. Des. (1980–2015) 65, 127 (2015).

    Article  Google Scholar 

  21. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Mater. Character. 140, 134 (2018).

    Article  Google Scholar 

  22. A. Kumar, D. Yadav, C.S. Perugu, and S.V. Kailas, Mater. Des. 113, 99 (2017).

    Article  Google Scholar 

  23. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Mater. Sci. Eng. A 488, 25 (2008).

    Article  Google Scholar 

  24. F.J. Humphreys, Acta Mater. 45, 4231 (1997).

    Article  Google Scholar 

  25. S.-Y. Kim, S.-B. Jung, C.-C. Shur, Y.-M. Yeon, and D.-U. Kim, J. Mater. Sci. 38, 1281 (2003).

    Article  Google Scholar 

  26. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 2973 (1996).

    Article  Google Scholar 

  27. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Acta Mater. 45, 4751 (1997).

    Article  Google Scholar 

  28. N. Kumar and R.S. Mishra, Mater. Character. 74, 1 (2012).

    Article  Google Scholar 

  29. I. Roy, M. Chauhan, F.A. Mohamed, and E.J. Lavernia, Metall. Mater. Trans. A 37, 721 (2006).

    Article  Google Scholar 

  30. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A 433, 50 (2006).

    Article  Google Scholar 

  31. P. Ulysse, Int. J. Mach. Tools Manuf 42, 1549 (2002).

    Article  Google Scholar 

  32. R.S. Mishra and M.W. Mahoney, Friction Stir Welding and Processing (ASM International, 2007).

  33. N.K.K.S. Suresh, R.S. Mishra, and S. Suwas, Mater. Sci. Forum 753, 247 (2013).

    Article  Google Scholar 

  34. A. Kar, S. Suwas, and S.V. Kailas, Mater. Sci. Eng. A 733, 199 (2018).

    Article  Google Scholar 

  35. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas, Metall. Trans. A 24, 2513 (1993).

    Article  Google Scholar 

  36. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas, Metall. Mater. Trans. A 25, 1425 (1994).

    Article  Google Scholar 

  37. R. Bauri, D. Yadav, and G. Suhas, Mater. Sci. Eng. A 528, 4732 (2011).

    Article  Google Scholar 

  38. J. Tardy and K.N. Tu, Phys. Rev. B 32, 2070 (1985).

    Article  Google Scholar 

  39. Y.-G. Guo, J.-S. Hu, and L.-J. Wan, Adv. Mater. 20, 2878 (2008).

    Article  Google Scholar 

  40. T.V.S.L. Satyavani, B. Ramya Kiran, V. Rajesh Kumar, A. Srinivas Kumar, and S.V. Naidu, Eng. Sci. Technol. 19, 40 (2016).

    Google Scholar 

  41. C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, and H.H. Wang, Microelectron. Reliab. 48, 416 (2008).

    Article  Google Scholar 

  42. D. Yadav and R. Bauri, Mater. Sci. Eng. A 539, 85 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Defense Research & Development Organization (DRDO, Grant No.: DRDO/MME/SVK/0618), Department of Science and Technology (DST), Ministry of Human Resources Development (MHRD), India, for support and research funding. We would also like to thank the Institute X-ray facility and Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science (IISc), Bangalore, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Suwas, S. & Kailas, S.V. Microstructural Modification and High-Temperature Grain Stability of Aluminum in an Aluminum-Titanium Friction Stir Weld with Zinc Interlayer. JOM 71, 444–451 (2019). https://doi.org/10.1007/s11837-018-3152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3152-1

Navigation