Skip to main content
Log in

Dynamic Tensile Behavior of Fiber Laser Welds of Medium Manganese Transformation-Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During a crash situation, tailor-welded blanks (TWBs) are subjected to local high strain rate (HSR) deformations. Hence, understanding the effects of fiber laser welding on the microstructure and subsequent dynamic (1 to 100 s−1) tensile properties of the recently developed medium-Mn transformation-induced plasticity (TRIP) steel is essential. Electron backscatter diffraction (EBSD) analysis indicated that Mn segregation during rapid solidification of the FZ resulted in retention of austenite within interdendritic regions. Moreover, it was found that the lower stability of retained austenite within the intercritical heat-affected zone (HAZ) resulted in double yielding behavior of the welds due to discontinuous yielding (Lüders banding). However, by increasing the strain rate, the second yield point decreased and shifted to higher strains. In the dynamic loading range, the ultimate tensile strength (UTS) and elongation of welds showed positive strain rate sensitivity (SRS). In addition, high-speed thermal camera results indicated that the average temperature decreased with increasing strain rate as a consequence of the balance between TRIP effect suppression and HSR adiabatic heating. The overall increase in elongation of the welds at higher strain rates was attributed to the higher localized softening during pre-failure nonuniform deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R. Ashiri, S.P.H. Marashi, and Y.D. Park: Weld. Res., 2018, 50, 157–69.

    Google Scholar 

  2. R. Ashiri, H. Mostaan, and Y. Park: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6161–72.

    Article  Google Scholar 

  3. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  4. J.J. Guzman-aguilera, C.J. Martinez-gonzalez, V.H. Baltazar-hernandez, and S. Basak: Mater. Sci. Eng. A, 2018, vol. 718, pp. 216–27.

    Article  Google Scholar 

  5. I. Hajiannia, M. Shamanian, M. Atapour, and R. Ashiri: SAE Int. J. Mater. Manuf., 2018, 12, 5-12

    Article  Google Scholar 

  6. I. Hajiannia, M. Shamanian, M. Atapour, E. Ghassemali, R. Ashiri, and F. Lambiase: Cog. Eng., 2018, vol. 5, pp. 1–13.

    Google Scholar 

  7. L. Samek, E. De Moor, J. Penning, and B.C. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–24.

    Article  Google Scholar 

  8. E.M. Bellhouse and J.R. Mcdermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1460–73.

    Article  Google Scholar 

  9. P. Jacques, Q. Furnémont, A. Mertens, and F. Delannay: Philos. Mag., 2009, vol. 81, pp. 1789–1812.

    Article  Google Scholar 

  10. J.E. Jin and Y.K. Lee: Acta Mater., 2012, vol. 60, pp. 1680–88.

    Article  Google Scholar 

  11. S. Kang, Y. Jung, J. Jun, and Y. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 745–51.

    Article  Google Scholar 

  12. M.H. Razmpoosh, M. Shamanian, and M. Esmailzadeh: Mater. Des., 2015, vol. 67, pp. 571–76.

    Article  Google Scholar 

  13. S. Martin, S. Wolf, U. Martin, and L. Kru: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 49–58.

    Article  Google Scholar 

  14. M.H. Razmpoosh, A. Zarei-hanzaki, N. Haghdadi, J. Cho, W. Jae, and S. Heshmati-manesh: Mater. Sci. Eng. A, 2015, vol. 638, pp. 5–14.

    Article  Google Scholar 

  15. L. Mujica Roncery, S. Weber, and W. Theisen: Scripta Mater., 2012, vol. 66, pp. 997–1001.

    Article  Google Scholar 

  16. R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.H. Bae, C.W. Ji, K.G. Chin, and Y. Do Park: Scripta Mater., 2016, vol. 114, pp. 41–47.

    Article  Google Scholar 

  17. R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H.R. Salimijazi, and Y. Do Park: Scripta Mater., 2015, vol. 109, pp. 6–10.

    Article  Google Scholar 

  18. C. Beal, X. Kleber, and M. Bouzekri: Scripta Mater., 2012, vol. 66, pp. 1030–33.

    Article  Google Scholar 

  19. A. Perlade, A. Antoni, R. Besson, D. Caillard, J. Emo, A. Gourgues, P. Maugis, L. Thuinet, Q. Tonizzo, J. Schmitt, A. Perlade, A. Antoni, R. Besson, D. Caillard, J. Emo, A. Gourgues, P. Maugis, and A. Mestrallet: Mater. Sci. Technol. 2019, 35, 219-40

    Article  Google Scholar 

  20. D. Suh and S. Kim: Scripta Mater., 2017, vol. 126, pp. 63–67.

    Article  Google Scholar 

  21. Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai: Mater. Sci. Eng. A, 2017, vol. 682, pp. 211–19.

    Article  Google Scholar 

  22. L. Luo, W. Li, L. Wang, S. Zhou, and X. Jin: Mater. Sci. Eng. A, 2017, vol. 682, pp. 698–703.

    Article  Google Scholar 

  23. Y. Lee, J. Han, Y. Lee, and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.

    Article  Google Scholar 

  24. Y. Chang, M. Wang, N. Wang, X. Li, C. Wang, and G. Zheng: Mater. Sci. Eng. A, 2018, vol. 721, pp. 179–88.

    Article  Google Scholar 

  25. B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas, X. Chu, M. Jahazi, and S. Yue: Mater. Sci. Eng. A, 2018, vol. 729, pp. 496–507.

    Article  Google Scholar 

  26. S. Lee and B.C.D.E. Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5018–24.

    Article  Google Scholar 

  27. B.B. He, H.W. Luo, and M.X. Huang: Int. J. Plast., 2016, vol. 78, pp. 173–86.

    Article  Google Scholar 

  28. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying: Acta Mater., 2015, vol. 84, pp. 229–36.

    Article  Google Scholar 

  29. Z.H. Cai, H. Ding, X. Xue, and Q.B. Xin: Mater. Sci. Eng. A, 2013, vol. 560, pp. 388–95.

    Article  Google Scholar 

  30. C. Lee, J. Jeong, J. Han, S. Lee, S. Lee, and Y. Lee: Acta Mater., 2015, vol. 84, pp. 1–8.

    Article  Google Scholar 

  31. C.-H. Kim, J.-K. Choi, M.-J. Kang, and Y.-D. Park: J. Achiev. Mater. Manuf. Eng., 2010, vol. 39 (1), pp. 79–86.

    Google Scholar 

  32. M. Xia and Y. Zhou: J. Eng. Mater. Technol., 2018, vol. 130, pp. 1–9.

    Google Scholar 

  33. M. Xia, E. Biro, Z. Tian, and Y.N. Zhou: ISIJ Int., 2008, vol. 48, pp. 809–14.

    Article  Google Scholar 

  34. D. Parkes, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen: Mater. Des., 2014, vol. 56, pp. 193–99.

    Article  Google Scholar 

  35. W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou: Mater. Sci. Eng. A, 2012, vol. 553, pp. 51–58.

    Article  Google Scholar 

  36. N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin, and Y. Zhou: Mater. Des., 2017, vol. 131, pp. 450–59.

    Article  Google Scholar 

  37. J. Talonen, P. Nenonen, G. Pape, and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–32.

    Article  Google Scholar 

  38. R. Alturk, C.M. Enloe, F. Abu-farha, and T.W. Brown: JOM, 2018, vol. 70, pp. 894–905.

    Article  Google Scholar 

  39. R. Rana, E.D.E. Moor, J.G. Speer, and D.K. Matlock: JOM, 2018, vol. 70, pp. 706–13.

    Article  Google Scholar 

  40. J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, and J.E. Wittig: Mater. Sci. Eng. A, 2018, vol. 711, pp. 78–92.

    Article  Google Scholar 

  41. H.K. Yang, Z.J. Zhang, Y.Z. Tian, and Z.F. Zhang: Mater. Sci. Eng. A, 2017, vol. 690, pp. 146–57.

    Article  Google Scholar 

  42. “Weld Specifications Laser Welds-Butt Joints GM4485M,” General Motors Engineering Standards, General Motors, 2002.

  43. M.W.R. Smerd, S. Winkler, and C. Salisbury: Int. J. Impact Eng., 2005, vol. 32, pp. 541–60.

    Article  Google Scholar 

  44. A. Bardelcik, M.J. Worswick, S. Winkler, and M.A. Wells: Int. J. Impact Eng., 2012, vol. 50, pp. 49–62.

    Article  Google Scholar 

  45. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, and M.Q. Wang: ISIJ Int., 2011, vol. 51, pp. 651–56.

    Article  Google Scholar 

  46. R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang: Mater. Sci. Eng. A, 2013, vol. 583, pp. 84–88.

    Article  Google Scholar 

  47. X. Li, R. Song, N. Zhou, and J. Li: Scripta Mater., 2018, vol. 154, pp. 30–33.

    Article  Google Scholar 

  48. Y. Yang, Z. Mi, M. Xu, Q. Xiu, J. Li, and H. Jiang: Mater. Sci. Eng. A, 2018, vol. 725, pp. 389–97.

    Article  Google Scholar 

  49. D.C. Saha, E. Biro, A.P. Gerlich, and Y. Zhou: Mater. Sci. Eng. A, 2016, vol. 673, pp. 467–75.

    Article  Google Scholar 

  50. B.S. Seong, E.J. Shin, Y.S. Han, C.H. Lee, Y.J. Kim, and S.J. Kim: Physica B 2004, 350, 467–69.

    Article  Google Scholar 

  51. L. Fu, Z. Li, H. Wang, and A. Shan: Scripta Mater., 2012, vol. 67, pp. 297–300.

    Article  Google Scholar 

  52. M. Xia, Z. Tian, L. Zhao, and Y.N. Zhou: ISIJ Int., 2008, vol. 48, pp. 483–88.

    Article  Google Scholar 

  53. W. Guo, Z. Wan, P. Peng, Q. Jia, G. Zou, and Y. Peng: J. Mater. Process. Technol., 2018, vol. 256, pp. 229–38.

    Article  Google Scholar 

  54. Z. He, Y. He, Y. Ling, Q. Wu, Y. Gao, and L. Li: J. Mater. Process. Technol., 2012, vol. 212, pp. 2141–47.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science and Engineering Research Council (NSERC) of Canada and the International Zinc Association (Durham, NC) for providing the financial support and materials to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Razmpoosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmpoosh, M.H., Biro, E., Goodwin, F. et al. Dynamic Tensile Behavior of Fiber Laser Welds of Medium Manganese Transformation-Induced Plasticity Steel. Metall Mater Trans A 50, 3578–3588 (2019). https://doi.org/10.1007/s11661-019-05261-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05261-6

Navigation